文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

2023-07-05 15:36

关注

本文小编为大家详细介绍“怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

下面的操作默认你安装好了python

一、conda创建并激活虚拟环境

前提:确定你安装好了anaconda并配置好了环境变量,如果没有,网上有很多详细的配置教程,请自行学习

在cmd命令提示符中输入conda命令查看anaconda

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

如果显示和上图相同,那么可以继续向下看

1.进入anaconda的base环境

方法1

在cmd命令提示符中输入如下命令

activate

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

方法2

直接在搜索栏里搜索anaconda prompt并打开即可

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

方法3

如果你是在linux操作系统下,在你的/anaconda/bin/下打开终端,即可直接进入anaconda的环境

以上三种方法出现(base)就意味着你已经进入了anaconda的基础环境

2.conda创建、进入和退出虚拟环境

这三个操作可以各用一行命令来完成

#创建一个虚拟环境conda create -n [your_env_name(你的虚拟环境的名字)] python==[X.X](2.5、3.8等)#eg:conda create -n nnunet_env python=3.8#进入虚拟环境conda activate [你的虚拟环境名]#退出虚拟环境conda deactivate

创建好的虚拟环境文件夹可以在anaconda文件夹中的envs文件夹里找到

后续的环境配置操作均要在激活虚拟环境的情况下完成!!!!!

二、查看CUDA版本

系统的CUDA版本,决定了系统最高可以支持什么版本的cudatoolkit,它是向下兼容

我们可以通过nvidia-smi命令查看cuda版本号

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

比如我的CUDA Version=11.7,那么它就可以支持 ≤ 11.7版本的CUDATookit

现在你已经知道了自己系统的cuda版本,接下来我会以自己利用清华镜像源来配置cuda+cudnn+pytorch深度学习环境的一个例子来简单直白的说明怎样去做

再提醒一遍,下面的操作也要在你激活自己的虚拟环境的情况下进行!

三、安装CUDATookit

我们需要用到下面这条命令

conda install cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/

我选择下载11.3版本,这个需要看你们自己的需求来改变,只要你系统的CUDA支持就可以

四、安装cuDNN

如果你成功安装了你想要的那个版本的cudatookit,注意,现在你安装cudnn的版本必须依赖于cudatookit的版本

cuda与cudnn的对应关系可以在cuDNN历史版本下载页面看到:

cuda下载页面

cudnn下载页面

这里我简单列出来了较新的一些版本之间的对应关系

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

根据上图可知,我安装了CUDA 11.3版本,那么可选的cuDNN版本有很多,这里我直接无脑安装了最新版本,也就是cuDNN的8.4.0版本,同样是用清华镜像源来安装

conda install cudnn=8.4.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

五、安装Pytorch

根据之前我们讲过的,pytorch的版本也是和CUDA版本有对应关系的,比如torch2.6.0只适配cuda10.2、10.1、9.2,不适配cuda11.0。

我们接下来的操作需要进入到Pytorch的官网Previous PyTorch Versions | PyTorch,在里面查看你想要的Pytorch版本它适配的CUDA版本并获取安装命令

比如我现在想要安装Pytorch的1.11.0版本,同时我之前已经安装了CUDA的11.3版本

怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

如上图,这一条命令可以满足我的pytorch和cuda之间的对应关系,因此,我们复制它并运行,即可安装Pytorch 1.11.0

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

注意:

  1. 也可以用pip install的命令来下载pytorch,但是因为三四两步都用的是conda,所以这里为了方便也用了condaconda install pytorch安装的是torch CPU版本,conda install pytorch torchvision -c pytorch安装的是GPU版本 检查环境是否配置成功

  2. 如果如下操作可以正常进行并打印出你安装的相应版本,那么你已经配置成功

#进入虚拟环境conda activate [你的虚拟环境名]#输入python来进入python的环境python#加载torchimport torchprint(torch.backends.cudnn.version())#输出8200,代表着成功安装了cudnn v8.4.0print(torch.__version__)#输出1.11.0,代表成功安装了pytorch 1.11.0print(torch.version.cuda)#输出11.3,代表成功安装了cuda 11.3torch.cuda.is_available()#True

读到这里,这篇“怎么在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯