同级目录下新建dup_video
import json
import os
import shutil
import cv2
import imagehash
from PIL import Image
from loguru import logger
from PySimpleGUI import popup_get_folder
class VideoDuplicate(object):
'''
返回整个视频的图片指纹列表
从1秒开始,每3秒抽帧,计算一张图像指纹
'''
def __init__(self):
self._over_length_video: list = []
self._no_video: list = []
def _video_hash(self, video_path) -> list:
'''
@param video_path -> 视频绝对路径;
'''
hash_arr = []
cap = cv2.VideoCapture(video_path) ##打开视频文件
logger.info(f'开始抽帧【{video_path}】')
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 视频的帧数
logger.warning(f'视频帧数:{n_frames}')
fps = cap.get(cv2.CAP_PROP_FPS) # 视频的帧率
logger.warning(f'视频帧率:{fps}')
dur = n_frames / fps * 1000 # 视频大致总长度
cap_set = 1000
logger.warning(f'视频大约总长:{dur / 1000}')
if dur // 1000 > 11:
logger.error(f'视频时长超出规定范围【6~10】;当前时长:【{dur // 1000}】;跳过该视频;')
self._over_length_video.append(video_path)
return []
while cap_set < dur: # 从3秒开始,每60秒抽帧,计算图像指纹。总长度-3s,是因为有的时候计算出来的长度不准。
cap.set(cv2.CAP_PROP_POS_MSEC, cap_set)
logger.debug(f'开始提取:【{cap_set // 1000}】/s的图片;')
# 返回该时间点的,图像(numpy数组),及读取是否成功
success, image_np = cap.read()
if success:
img = Image.fromarray(cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)) # 转成cv图像格式
h = str(imagehash.dhash(img))
logger.success(f'【{cap_set}/s图像指纹:【{h}】')
hash_arr.append(h) # 图像指纹
else:
logger.error(str(cap_set / 1000))
cap_set += 1000 * 2
cap.release() # 释放视频
return hash_arr
def start(self, base_dir):
'''
@param base_dir -> 主文件路径;
'''
data: list = []
for video in os.listdir(base_dir):
logger.debug(f'-' * 80)
name, ext = os.path.splitext(video)
if ext not in ('.mp4', '.MP4'):
logger.error(f'视频文件格式不符;【{video}】;执行跳过;')
continue
abs_video_path = os.path.join(base_dir, video)
video_hash_list = self._video_hash(abs_video_path)
if video_hash_list:
data.append({'video_abs_path': abs_video_path, 'hash': video_hash_list})
self._write_log(data)
return data
@staticmethod
def _write_log(data: list) -> None:
'''视频哈希后的值写入日志文件'''
with open(f'log.txt', 'w+', encoding='utf-8') as f:
f.write(json.dumps(data))
def __call__(self, base_dir, *args, **kwargs):
self.start(base_dir)
logger.debug(f'-----------------------------------开始比对关键帧差值感知余弦算法-----------------------------')
with open('log.txt') as f:
data = json.loads(f.read())
for i in range(0, len(data) - 1):
for j in range(i + 1, len(data)):
if data[i]['hash'] == data[j]['hash']:
_, filename = os.path.split(data[i]['video_abs_path'])
logger.error(f'移动文件:【{filename}】')
shutil.move(
os.path.join(base_dir, filename),
os.path.join(os.path.join(os.getcwd(), 'dup_video'), filename)
)
logger.warning('---------------------超长视频----------------------')
for i in self._over_length_video:
_, name = os.path.split(i)
logger.error(name)
def main():
path = popup_get_folder('请选择[视频去重]文件夹')
v = VideoDuplicate()
v(path)
if __name__ == '__main__':
main()
方法补充
除了上述代码,小编还整理了其他可以实现视频去除功能的方法,希望对大家有所帮助
python+opencv抽取视频帧并去重
import os
import sys
import cv2
import glob
import json
import numpy as np
import skimage
from skimage import metrics
import hashlib
print(skimage.__version__)
def load_json(json_file):
with open(json_file) as fp:
data = json.load(fp)
return data['outputs']
def ssim_dis(im1, im2):
ssim = metrics.structural_similarity(im1, im2, data_range=255, multichannel=True)
return ssim
# cv2
def isdarkOrBright(grayImg, thre_dark=10, thre_bright=230):
mean = np.mean(grayImg)
if mean < thre_dark or mean > thre_bright:
return True
else:
return False
def get_file_md5(file_name):
"""
caculate md5
: param file_name
: return md5
"""
m = hashlib.md5()
with open(file_name, 'rb') as fobj:
while True:
data = fobj.read(4096)
if not data:
break
m.update(data)
return m.hexdigest()
def extract_frame(video_path, save_dir, prefix, ssim_thre=0.90):
count = 0
md5set = {}
last_frame = None
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
index = 0
tmp_frames = []
while cap.isOpened():
frameState, frame = cap.read()
if not frameState or frame is None:
break
grayImg = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# if isdarkOrBright(grayImg):
# index += 1
# continue
assert cv2.imwrite('tmp.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 100])
md5 = get_file_md5('tmp.jpg')
if md5 in md5set:
md5set[md5] += 1
index += 1
continue
md5set[md5] = 1
save_path = os.path.join(save_dir, prefix+'_'+str(index).rjust(4, '0')+'.jpg')
if last_frame is None:
if cv2.imwrite(save_path, frame, [cv2.IMWRITE_JPEG_QUALITY, 100]):
count += 1
last_frame = frame
tmp_frames.append(frame)
else:
dis = ssim_dis(last_frame, frame)
if dis <= ssim_thre:
save_frame = tmp_frames[len(tmp_frames)//2]
if cv2.imwrite(save_path, save_frame, [cv2.IMWRITE_JPEG_QUALITY, 100]):
count += 1
last_frame = frame
tmp_frames = [frame]
else:
tmp_frames.append(frame)
index += 1
cap.release()
return count
if __name__ == '__main__':
import sys
video_path = "videos/***.mp4"
video_name = video_path.split("/")[-1]
prefix = video_name[:-4]
save_imgs_dir = prefix
if not os.path.exists(save_imgs_dir):
os.mkdir(save_imgs_dir)
N = extract_frame(video_path, save_imgs_dir, prefix)
print(video_name, N)
对图片,视频,文件进行去重
import os
from tkinter import *
from tkinter import messagebox
import tkinter.filedialog
root=Tk()
root.title("筛选重复的视频和照片")
root.geometry("500x500+500+200")
def wbb():
a=[]
c={}
filename=tkinter.filedialog.askopenfilenames()
for i in filename:
with open(i,'rb') as f:
a.append(f.read())
for j in range(len(a)):
c[a[j]]=filename[j]
filename1=tkinter.filedialog.askdirectory()
if filename1!="":
p=1
lb1.config(text=filename1+"下的文件为:")
for h in c:
k=c[h].split(".")[-1]
with open(filename1+"/"+str(p)+"."+k,'wb') as f:
f.write(h)
p=p+1
for g in os.listdir(filename1):
txt.insert(END,g+'\n')
else:
messagebox.showinfo("提示",message ='请选择路径')
frame1=Frame(root,relief=RAISED)
frame1.place(relx=0.0)
frame2=Frame(root,relief=GROOVE)
frame2.place(relx=0.5)
lb1=Label(frame1,text="等等下面会有变化?",font=('华文新魏',13))
lb1.pack(fill=X)
txt=Text(frame1,width=30,height=50,font=('华文新魏',10))
txt.pack(fill=X)
lb=Label(frame2,text="点我选择要进行筛选的文件:",font=('华文新魏',10))
lb.pack(fill=X)
btn=Button(frame2,text="请选择要进行筛选的文件",fg='black',relief="raised",bd="9",command=wbb)
btn.pack(fill=X)
root.mainloop()
效果图
到此这篇关于基于Python实现视频去重小工具的文章就介绍到这了,更多相关Python视频去重内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!