这篇文章主要介绍了pandas中如何使用join函数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
join
join就有点想append之于concat,用于数据合并
df.join( other: 'FrameOrSeriesUnion', on: 'IndexLabel | None' = None, how: 'str' = 'left', lsuffix: 'str' = '', rsuffix: 'str' = '', sort: 'bool' = False,) -> 'DataFrame'
在函数方法中,关键参数含义如下:
other: 用于合并的右侧数据
on: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on
how: 数据连接方式,默认为 inner,可选outer、left和right
lsuffix: 左侧同名列后缀
rsuffix:右侧同名列后缀
接下来,我们就对该函数功能进行演示
In [71]: df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ...: 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})In [72]: other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ...: 'B': ['B0', 'B1', 'B2']})In [73]: dfOut[73]: key A0 K0 A01 K1 A12 K2 A23 K3 A34 K4 A45 K5 A5In [74]: otherOut[74]: key B0 K0 B01 K1 B12 K2 B2In [75]: df.join(other, on='key')Traceback (most recent call last):...ValueError: You are trying to merge on object and int64 columns. If you wish to proceed you should use pd.concat
如果想用key关键字, 则需要key是索引。。。
指定key
In [76]: df.set_index('key').join(other.set_index('key'))Out[76]: A Bkey K0 A0 B0K1 A1 B1K2 A2 B2K3 A3 NaNK4 A4 NaNK5 A5 NaNIn [77]: df.join(other.set_index('key'), on='key')Out[77]: key A B0 K0 A0 B01 K1 A1 B12 K2 A2 B23 K3 A3 NaN4 K4 A4 NaN5 K5 A5 NaN
指定重复列后缀
In [78]: df.join(other, lsuffix='_左', rsuffix='右')Out[78]: key_左 A key右 B0 K0 A0 K0 B01 K1 A1 K1 B12 K2 A2 K2 B23 K3 A3 NaN NaN4 K4 A4 NaN NaN5 K5 A5 NaN NaN
其他参数就不多做介绍了,和merge基本一样。
感谢你能够认真阅读完这篇文章,希望小编分享的“pandas中如何使用join函数”这篇文章对大家有帮助,同时也希望大家多多支持编程网,关注编程网行业资讯频道,更多相关知识等着你来学习!