文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++ AVL树插入新节点后的四种调整情况梳理介绍

2024-04-02 19:55

关注

AVL树是一个高度平衡的二叉搜索树

此处AVL树结点的定义

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V> _left;
	AVLTreeNode<K, V> _right;
	AVLTreeNode<K, V> _parent;
	pair<K, V> _kv;
	int _bf; //平衡因子
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

使用平衡因子,是维持AVL树的方法之一。

此处平衡因子 = 右子树高度 - 左子树高度。

AVL树的定义及默认构造函数

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(nullptr)
	{}
private:
	Node* _root;
};

按照普通二叉搜索树的办法先尝试插入: bool insert(const pair<K, V>& kv);

bool insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		//插入之前是一棵空树,则插入结点变成根结点
		_root = new Node(kv);
		return true;
	}
	//找到一个NULL位置插入
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			//说明已经有了,就不再插入
			return false;
		}
	}
	//已找到,准备插入
	cur = new Node(kv);
	if (parent->_kv.first > kv.first)
	{
		//如果比parent小,链接到parent的左
		parent->_left = cur;
		cur->_parent = parent;
	}
	else
	{
		parent->_right = cur;
		cur->_parent = parent;
	}
}

虽然插入之后,依旧会保持二叉搜索树的特性,但是AVL树的特性可能就被破坏了。当平衡因子的绝对值是2的时候就需要进行调整。以下是AVL树特性被破坏的四种情况及解决办法:

情况一:右单旋。

结点插入后,导致左子树高度比右子树高2,其左孩子的左子树比右子树高1。

口诀:自己左高2,左孩子左高1,左单旋。

情况二:左单旋。

结点插入后,导致右子树的高度比左子树高2,其右孩子的右子树比左子树高1.

口诀:自己右高2,右孩子右高1,右单旋。

情况三:先左单旋、再右边单旋。

结点插入后,导致左子树的高度比右子树的高度高2,其左孩子的右子树比左子树高度高1.

口诀:自己左高2,左孩子右高1,先右旋后左旋。

情况四:先右单旋,再左单旋。

结点插入后右子树比左子树高2,其右孩子的左子树比右子树高1。

口诀:自己右高2,右孩子左高1,先右旋后左旋。

情况三和情况四种,每一种情况又衍生出了两种子问题,关乎平衡因子的更新数值。(假设此时平衡因子是-2的结点为parent, parent的左孩子为subL, subL的右孩子为subLR)

情况三的子问题

a、增加结点放在subLR的左子树。

b、增加结点放在subLR的右子树

调整后

调整后

可以看出,平衡因子的数值和结点放置位置是强相关的。虽然是同一种大情况,但是放在左子树和放在右子树,上面结点的平衡因子数值不一样。情况四也有两种子情况,和情况三的两种子情况一样。

假设此时平衡因子是2的结点为parent, parent的右孩子为subR, subR的左孩子为subRL

情况四的子问题

a、增加结点放在subRL的左子树。

b、增加结点放在sub的右子树。

AVL树简单模拟插入的对应代码

namespace Blog
{
	template<class K, class V>
	struct AVLTreeNode
	{
		AVLTreeNode<K, V> _left;
		AVLTreeNode<K, V> _right;
		AVLTreeNode<K, V> _parent;
		pair<K, V> _kv;
		int _bf; //平衡因子
		AVLTreeNode(const pair<K, V>& kv)
			:_left(nullptr)
			, _right(nullptr)
			, _parent(nullptr)
			, _kv(kv)
			, _bf(0)
		{}
	};
	template<class K, class V>
	class AVLTree
	{
		typedef AVLTreeNode<K, V> Node;
	public:
		AVLTree()
			:_root(nullptr)
		{}
		bool insert(const pair<K, V>& kv)
		{
			if (_root == nullptr)
			{
				//插入之前是一棵空树,则插入结点变成根结点
				_root = new Node(kv);
				return true;
			}
			//找到一个NULL位置插入
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_kv.first > kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if(cur->_kv.first < kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//说明已经有了,就不再插入
					return false;
				}
			}
			//已找到,准备插入
			cur = new Node(kv);
			if (parent->_kv.first > kv.first)
			{
				//如果比parent小,链接到parent的左
				parent->_left = cur;
				cur->_parent = parent;
			}
			else
			{
				parent->_right = cur;
				cur->_parent = parent;
			}
			//更新平衡因子,平衡因子不符合时,调节树
			while (parent)
			{
				//第一步:更新平衡因子
				if (parent->_left == cur)
					parent->_bf--;
				else
					parent->_bf++;
				//检查平衡因子,如果平衡因子不符合,需要调整树
				if (0 == parent->_bf)
				{
					break;
				}
				else if (parent->_bf == 1 || parent->_bf == -1)
				{
					//继续往上更新平衡因子
					cur = parent;
					parent = cur->_parent;
				}
				else if(parent->_bf == 2 || parent->_bf == -2)
				{
					//平衡因子不符合,说明左子树和右子树高度之差为2,需要调整树
					//情况一:右单旋
					if (parent->_bf == -2 && cur->_bf == -1)
					{
						RotateR(parent);
					}
					else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
					{
						RotateL(parent);
					}
					else if (parent->_bf == -2 && cur->_bf == 1)
					{
						RotateLR(parent);
					}
					else if (parent->_bf == 2 && cur->_bf == -1)
					{
						RotateRL(parent);
					}
					else
					{
						assert(false);
					}
				}
				else
				{
					//说明插入之前,这颗树就已经不符合AVL树的特性了
					assert(false);
				}
			}
			return true;
		}
	private:
		void RotateR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subLR->_right;
			parent->_left = subLR;
			if (subLR)
			{
				subLR->_parent = parent;
			}
			Node* parentParent = parent->_parent;
			subL->_right = parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				subL->_parent = nullptr;
				_root = subL;
			}
			else
			{
				if (parentParent->_left = parent)
				{
					parentParent->_left = subL;
					subL->_parent = parentParent;
				}
				else
				{
					parentParent->_right = subL;
					subL->_parent = parentParent;
				}
			}
			//调节后,重新更新平衡因子
			parent->_bf = subL->_bf = 0;
		}
		void RotateL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subRL->_left;
			parent->_right = subRL;
			if (subRL)
				suRL->_parent = parent;
			Node* parentParent = parent->_parent;
			subR->_left = parent;
			parent->_parent = subR;
			if (parent == _root)
			{
				subR->_parent = nullptr;
				_root = subR;
			}
			else
			{
				if (parentParent->_left = parent)
				{
					parentParent->_left = subR;
					subR->_parent = parentParent;
				}
				else
				{
					parentParent->_right = subR;
					subR->_parent = parentParent;
				}
			}
			subR->_bf = parent->_bf = 0;
		}
		void RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			int bf = subLR->_bf; //用于后面判断加在subRL的左子树还是右子树
			RotateL(parent->_left);
			RotateR(parent);
			//它的两种子情况,更新的平衡因子不一样
			if (bf == -1)
			{
				//加在subLR的左子树
				parent->_bf = 1;
				subL->_bf = 0;
				subLR->_bf = 0;
			}
			else if (bf == 1)
			{
				//加在右子树
				parent->_bf = 0;
				subL->_bf = -1;
				subLR->_bf = 0;
			}
			else if (bf == 0)
			{
				parent->_bf = 0;
				subL->_bf = 0;
				subLR->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}
		void RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subL->_left;
			int bf = subRL->_bf; //用于后面判断加在subRL的左子树还是右子树
			RotateL(parent->_right);
			RotateR(parent);
			//它的两种子情况,更新的平衡因子不一样
			if (bf == -1)
			{
				//加在subRL的子树
				parent->_bf = 0;
				subR->_bf = 0;
				subRL->_bf = 1;
			}
			else if (bf == 1)
			{
				//加在左子树
				parent->_bf = -1;
				subR->_bf = 0;
				subRL->_bf = 0;
			}
			else if (bf == 0)
			{
				parent->_bf = 0;
				subR->_bf = 0;
				subRL->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}
	private:
		Node* _root;
	};
}

到此这篇关于C++ AVL树插入新节点后的四种调整情况梳理介绍的文章就介绍到这了,更多相关C++ AVL树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯