文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

scipy.interpolate插值方法实例讲解

2022-12-29 18:00

关注

scipy.interpolate插值方法

1 一维插值

from scipy.interpolate import interp1d
1维插值算法

from scipy.interpolate import interp1d
x = np.linspace(0, 10, num=11, endpoint=True)
y = np.cos(-x**2/9.0)
f = interp1d(x, y)
f2 = interp1d(x, y, kind='cubic')
xnew = np.linspace(0, 10, num=41, endpoint=True)
import matplotlib.pyplot as plt
plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
plt.legend(['data', 'linear', 'cubic'], loc='best')
plt.show()

数据点,线性插值结果,cubic插值结果:

在这里插入图片描述

2 multivariate data

from scipy.interpolate import interp2d

from scipy.interpolate import griddata
多为插值方法,可以应用在2Dlut,3Dlut的生成上面,比如当我们已经有了两组RGB映射数据, 可以插值得到一个查找表。

二维插值的例子如下:

import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt

from scipy.interpolate import griddata, RegularGridInterpolator, Rbf

if __name__ == "__main__":
    x_edges, y_edges = np.mgrid[-1:1:21j, -1:1:21j]
    x = x_edges[:-1, :-1] + np.diff(x_edges[:2, 0])[0] / 2.
    y = y_edges[:-1, :-1] + np.diff(y_edges[0, :2])[0] / 2.

    # x_edges, y_edges 是 20个格的边缘的坐标, 尺寸 21 * 21
    # x, y 是 20个格的中心的坐标, 尺寸 20 * 20

    z = (x + y) * np.exp(-6.0 * (x * x + y * y))

    print(x_edges.shape, x.shape, z.shape)
    plt.figure()
    lims = dict(cmap='RdBu_r', vmin=-0.25, vmax=0.25)
    plt.pcolormesh(x_edges, y_edges, z, shading='flat', **lims) # plt.pcolormesh(), plt.colorbar() 画图
    plt.colorbar()
    plt.title("Sparsely sampled function.")
    plt.show()

    # 使用grid data
    xnew_edges, ynew_edges = np.mgrid[-1:1:71j, -1:1:71j]
    xnew = xnew_edges[:-1, :-1] + np.diff(xnew_edges[:2, 0])[0] / 2. # xnew其实是 height new
    ynew = ynew_edges[:-1, :-1] + np.diff(ynew_edges[0, :2])[0] / 2.
    grid_x, grid_y = xnew, ynew

    print(x.shape, y.shape, z.shape)
    points = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1)))
    z1 = z.reshape(-1, 1)

    grid_z0 = griddata(points, z1, (grid_x, grid_y), method='nearest').squeeze()
    grid_z1 = griddata(points, z1, (grid_x, grid_y), method='linear').squeeze()
    grid_z2 = griddata(points, z1, (grid_x, grid_y), method='cubic').squeeze()

    rbf = Rbf(points[:, 0], points[:, 1], z, epsilon=2)
    grid_z3 = rbf(grid_x, grid_y)

    plt.subplot(231)
    plt.imshow(z.T, extent=(-1, 1, -1, 1), origin='lower')
    plt.plot(points[:, 0], points[:, 1], 'k.', ms=1)
    plt.title('Original')
    plt.subplot(232)
    plt.imshow(grid_z0.T, extent=(-1, 1, -1, 1), origin='lower')
    plt.title('Nearest')
    plt.subplot(233)
    plt.imshow(grid_z1.T, extent=(-1, 1, -1, 1), origin='lower', cmap='RdBu_r')
    plt.title('Linear')
    plt.subplot(234)
    plt.imshow(grid_z2.T, extent=(-1, 1, -1, 1), origin='lower')
    plt.title('Cubic')
    plt.subplot(235)
    plt.imshow(grid_z3.T, extent=(-1, 1, -1, 1), origin='lower')
    plt.title('rbf')
    plt.gcf().set_size_inches(8, 6)
    plt.show()


在这里插入图片描述

示例2:

def func(x, y):
    return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2


grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]


rng = np.random.default_rng()
points = rng.random((1000, 2))
values = func(points[:,0], points[:,1])

from scipy.interpolate import griddata
grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

import matplotlib.pyplot as plt
plt.subplot(221)
plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
plt.plot(points[:,0], points[:,1], 'k.', ms=1)
plt.title('Original')
plt.subplot(222)
plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
plt.title('Nearest')
plt.subplot(223)
plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
plt.title('Linear')
plt.subplot(224)
plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
plt.title('Cubic')
plt.gcf().set_size_inches(6, 6)
plt.show()

在这里插入图片描述

3 Multivariate data interpolation on a regular grid

from scipy.interpolate import RegularGridInterpolator

已知一些grid上的值。
可以应用在2Dlut,3Dlut,当我们已经有了一个多维查找表,然后整个图像作为输入,得到查找和插值后的输出。

二维网格插值方法(好像和resize的功能比较一致)

# 使用RegularGridInterpolator
import matplotlib.pyplot as plt
from scipy.interpolate import RegularGridInterpolator

def F(u, v):
    return u * np.cos(u * v) + v * np.sin(u * v)

fit_points = [np.linspace(0, 3, 8), np.linspace(0, 3, 8)]
values = F(*np.meshgrid(*fit_points, indexing='ij'))

ut, vt = np.meshgrid(np.linspace(0, 3, 80), np.linspace(0, 3, 80), indexing='ij')
true_values = F(ut, vt)
test_points = np.array([ut.ravel(), vt.ravel()]).T

interp = RegularGridInterpolator(fit_points, values)
fig, axes = plt.subplots(2, 3, figsize=(10, 6))
axes = axes.ravel()
fig_index = 0
for method in ['linear', 'nearest', 'linear', 'cubic', 'quintic']:
    im = interp(test_points, method=method).reshape(80, 80)
    axes[fig_index].imshow(im)
    axes[fig_index].set_title(method)
    axes[fig_index].axis("off")
    fig_index += 1
axes[fig_index].imshow(true_values)
axes[fig_index].set_title("True values")
fig.tight_layout()
fig.show()
plt.show()

在这里插入图片描述

4 Rbf 插值方法

interpolate scattered 2-D data

import numpy as np
from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from matplotlib import cm

# 2-d tests - setup scattered data
rng = np.random.default_rng()
x = rng.random(100) * 4.0 - 2.0
y = rng.random(100) * 4.0 - 2.0
z = x * np.exp(-x ** 2 - y ** 2)


edges = np.linspace(-2.0, 2.0, 101)
centers = edges[:-1] + np.diff(edges[:2])[0] / 2.

XI, YI = np.meshgrid(centers, centers)
# use RBF
rbf = Rbf(x, y, z, epsilon=2)
Z1 = rbf(XI, YI)

points = np.hstack((x.reshape(-1, 1), y.reshape(-1, 1)))
Z2 = griddata(points, z, (XI, YI), method='cubic').squeeze()

# plot the result
plt.figure(figsize=(20,8))
plt.subplot(1, 2, 1)
X_edges, Y_edges = np.meshgrid(edges, edges)
lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4)
plt.pcolormesh(X_edges, Y_edges, Z1, shading='flat', **lims)
plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims)
plt.title('RBF interpolation - multiquadrics')
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.colorbar()

plt.subplot(1, 2, 2)
X_edges, Y_edges = np.meshgrid(edges, edges)
lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4)
plt.pcolormesh(X_edges, Y_edges, Z2, shading='flat', **lims)
plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims)
plt.title('griddata - cubic')
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.colorbar()
plt.show()

得到结果如下, RBF一定程度上和 griddata可以互用, griddata方法比较通用

在这里插入图片描述

[1]https://docs.scipy.org/doc/scipy/tutorial/interpolate.html

到此这篇关于scipy.interpolate插值方法介绍的文章就介绍到这了,更多相关scipy.interpolate插值内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯