文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【数据分析之道-Matplotlib(七)】Matplotlib直方图

2023-09-12 18:58

关注

在这里插入图片描述

文章目录

专栏导读

✍ 作者简介:i阿极,CSDN Python领域新星创作者,专注于分享python领域知识。

本文录入于《数据分析之道》,本专栏针对大学生、初级数据分析工程师精心打造,对python基础知识点逐一击破,不断学习,提升自我。
订阅后,可以阅读《数据分析之道》中全部文章内容,包含python基础语法、数据结构和文件操作,科学计算,实现文件内容操作,实现数据可视化等等。
✍ 其他专栏:《数据分析案例》《机器学习案例》

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪

1、hist()基本语法

hist()函数是Matplotlib库中用于绘制直方图的函数。它的语法如下:

plt.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False,          bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None,         log=False, color=None, label=None, stacked=False, normed=None, **kwargs)

下面是一些常用参数的解释:

实例演示hist()制作简单的直方图:

import matplotlib.pyplot as pltimport numpy as np# 准备数据data = np.random.randn(1000)# 绘制直方图plt.hist(data)# 添加标签和标题plt.xlabel('Value')plt.ylabel('Frequency')plt.title('Histogram')# 显示图表plt.show()

在这里插入图片描述

2、使用 hist() 函数绘制多个数据组的直方图

当使用hist()函数绘制多个数据组的直方图时,可以在同一图表中显示这些直方图,并进行比较。
下面是一个示例,演示如何使用hist()函数绘制多个数据组的直方图,并进行比较:

import matplotlib.pyplot as pltimport numpy as np# 生成随机数据np.random.seed(0)data1 = np.random.normal(0, 1, 1000)data2 = np.random.normal(2, 1, 800)data3 = np.random.normal(-2, 1, 1200)# 绘制直方图plt.hist(data1, bins=30, alpha=0.5, label='Data 1')plt.hist(data2, bins=30, alpha=0.5, label='Data 2')plt.hist(data3, bins=30, alpha=0.5, label='Data 3')# 添加标签和标题plt.xlabel('Value')plt.ylabel('Frequency')plt.title('Histogram Comparison')# 添加图例plt.legend()# 显示图表plt.show()

在这里插入图片描述

在这个例子中,我们生成了三组随机数据data1、data2和data3。然后,我们分别使用plt.hist()函数绘制了这三组数据的直方图,并使用bins参数设置了直方图的柱子数量,alpha参数设置了柱子的透明度,label参数设置了每组数据的标签。
接下来,我们添加了x轴和y轴的标签,以及一个标题。然后,使用plt.legend()函数添加了图例,以便区分不同的数据组。
最后,我们调用plt.show()函数显示了绘制好的直方图。

3、修改直方图的颜色及边框颜色

要修改直方图的颜色和边框颜色,可以使用color参数和edgecolor参数来设置。
下面是一个示例,演示如何修改直方图的颜色和边框颜色:

import matplotlib.pyplot as pltimport numpy as np# 生成随机数据np.random.seed(0)data = np.random.randn(1000)# 绘制直方图plt.hist(data, bins=30, color='skyblue', edgecolor='black')# 添加标签和标题plt.xlabel('Value')plt.ylabel('Frequency')plt.title('Histogram')# 显示图表plt.show()

在这里插入图片描述

在这个例子中,我们生成了随机数据data。然后,我们使用plt.hist()函数绘制了直方图,并通过color参数将柱子的颜色设置为天蓝色,通过edgecolor参数将柱子的边框颜色设置为黑色。
你可以根据需要修改color参数和edgecolor参数的值,选择适合的颜色来自定义直方图的外观。
运行代码后,你将看到绘制好的直方图,柱子的颜色为天蓝色,边框颜色为黑色。

4、六一儿童节为主题,使用直方图进行可视化

当以儿童节为主题进行可视化时,可以使用直方图展示与儿童节相关的数据。以下是一个示例,演示如何使用直方图可视化儿童节礼物的数量分布:

import matplotlib.pyplot as plt# 儿童节礼物的数量数据gifts = ['Dolls', 'Cars', 'Balloons', 'Candies', 'Books']quantity = [45, 60, 30, 80, 50]# 绘制直方图plt.bar(gifts, quantity, color='skyblue')# 添加标签和标题plt.xlabel('Gifts')plt.ylabel('Quantity')plt.title('Children\'s Day Gifts Distribution')# 显示图表plt.show()

在这里插入图片描述

在这个示例中,我们定义了儿童节礼物的种类(gifts)和每种礼物的数量(quantity)。然后,我们使用plt.bar()函数绘制了儿童节礼物的直方图,将礼物作为x轴,数量作为y轴,并使用天蓝色作为柱子的颜色。
最后,我们添加了标签和标题,以便更好地说明图表的含义。


📢文章下方有交流学习区!一起学习进步!💪💪💪
📢首发CSDN博客,创作不易,如果觉得文章不错,可以点赞👍收藏📁评论📒
📢你的支持和鼓励是我创作的动力❗❗❗

来源地址:https://blog.csdn.net/AOAIYI/article/details/131041615

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯