文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pytorch中常用的乘法运算及相关的运算符(@和*)

2024-04-02 19:55

关注

前言

这里总结一下pytorch常用的乘法运算以及相关的运算符(@、*)。

总结放前面:

torch.mm : 用于两个矩阵(不包括向量)的乘法。如维度为(l,m)和(m,n)相乘

torch.bmm : 用于带batch的三维向量的乘法。如维度为(b,l,m)和(b,m,n)相乘

torch.mul : 用于两个同维度矩阵的逐像素点相乘(点乘)。如维度为(l,m)和(l,m)相乘

torch.mv : 用于矩阵和向量之间的乘法(矩阵在前,向量在后)。如维度为(l,m)和(m)相乘,结果的维度为(l)。

torch.matmul : 用于两个张量(后两维满足矩阵乘法的维度)相乘或者是矩阵与向量间的乘法,因为其具有广播机制(broadcasting,自动补充维度)。如维度为(b,l,m)和(b,m,n);(l,m)和(b,m,n);(b,c,l,m)和(b,c,m,n);(l,m)和(m)相乘等。【其作用包含torch.mm、torch.bmm和torch.mv】

@运算符 : 其作用类似于torch.matmul。

*运算符 : 其作用类似于torch.mul。

1、torch.mm

import torch
a = torch.ones(1, 2)
print(a)
b = torch.ones(2, 3)
print(b)
output = torch.mm(a, b)
print(output)
print(output.size())
"""
tensor([[1., 1.]])
tensor([[1., 1., 1.],
        [1., 1., 1.]])
tensor([[2., 2., 2.]])
torch.Size([1, 3])
"""

2、torch.bmm

a = torch.randn(2, 1, 2)
print(a)
b = torch.randn(2, 2, 3)
print(b)
output = torch.bmm(a, b)
print(output)
print(output.size())
"""
tensor([[[-0.1187,  0.2110]],

        [[ 0.7463, -0.6136]]])
tensor([[[-0.1186,  1.5565,  1.3662],
         [ 1.0199,  2.4644,  1.1630]],

        [[-1.9483, -1.6258, -0.4654],
         [-0.1424,  1.3892,  0.7559]]])
tensor([[[ 0.2293,  0.3352,  0.0832]],

        [[-1.3666, -2.0657, -0.8111]]])
torch.Size([2, 1, 3])
"""

3、torch.mul

a = torch.ones(2, 3) * 2
print(a)
b = torch.randn(2, 3)
print(b)
output = torch.mul(a, b)
print(output)
print(output.size())
"""
tensor([[2., 2., 2.],
        [2., 2., 2.]])
tensor([[-0.1187,  0.2110,  0.7463],
        [-0.6136, -0.1186,  1.5565]])
tensor([[-0.2375,  0.4220,  1.4925],
        [-1.2271, -0.2371,  3.1130]])
torch.Size([2, 3])
"""

4、torch.mv

mat = torch.randn(3, 4)
print(mat)
vec = torch.randn(4)
print(vec)
output = torch.mv(mat, vec)
print(output)
print(output.size())
print(torch.mm(mat, vec.unsqueeze(1)).squeeze(1))
"""
tensor([[-0.1187,  0.2110,  0.7463, -0.6136],
        [-0.1186,  1.5565,  1.3662,  1.0199],
        [ 2.4644,  1.1630, -1.9483, -1.6258]])
tensor([-0.4654, -0.1424,  1.3892,  0.7559])
tensor([ 0.5982,  2.5024, -5.2481])
torch.Size([3])
tensor([ 0.5982,  2.5024, -5.2481])
"""

5、torch.matmul

# 其作用包含torch.mm、torch.bmm和torch.mv。其他类似,不一一举例。
a = torch.randn(2, 1, 2)
print(a)
b = torch.randn(2, 2, 3)
print(b)
output = torch.bmm(a, b)
print(output)
output1 = torch.matmul(a, b)
print(output1)
print(output1.size())
"""
tensor([[[-0.1187,  0.2110]],

        [[ 0.7463, -0.6136]]])
tensor([[[-0.1186,  1.5565,  1.3662],
         [ 1.0199,  2.4644,  1.1630]],

        [[-1.9483, -1.6258, -0.4654],
         [-0.1424,  1.3892,  0.7559]]])
tensor([[[ 0.2293,  0.3352,  0.0832]],

        [[-1.3666, -2.0657, -0.8111]]])
tensor([[[ 0.2293,  0.3352,  0.0832]],

        [[-1.3666, -2.0657, -0.8111]]])
torch.Size([2, 1, 3])
"""
# 维度为(b,l,m)和(b,m,n);(l,m)和(b,m,n);(b,c,l,m)和(b,c,m,n);(l,m)和(m)等
a = torch.randn(2, 3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
a = torch.randn(3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
a = torch.randn(2, 3, 3, 4)
b = torch.randn(2, 3, 4, 5)
print(torch.matmul(a, b).size())
a = torch.randn(2, 3)
b = torch.randn(3)
print(torch.matmul(a, b).size())
"""
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 3, 5])
torch.Size([2])
"""

6、@运算符

# @运算符:其作用类似于torch.matmul
a = torch.randn(2, 3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
print((a @ b).size())
a = torch.randn(3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
print((a @ b).size())
a = torch.randn(2, 3, 3, 4)
b = torch.randn(2, 3, 4, 5)
print(torch.matmul(a, b).size())
print((a @ b).size())
a = torch.randn(2, 3)
b = torch.randn(3)
print(torch.matmul(a, b).size())
print((a @ b).size())
"""
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 3, 5])
torch.Size([2, 3, 3, 5])
torch.Size([2])
torch.Size([2])
"""

7、*运算符

# *运算符:其作用类似于torch.mul
a = torch.ones(2, 3) * 2
print(a)
b = torch.ones(2, 3) * 3
print(b)
output = torch.mul(a, b)
print(output)
print(output.size())
output1 = a * b
print(output1)
print(output1.size())
"""
tensor([[2., 2., 2.],
        [2., 2., 2.]])
tensor([[3., 3., 3.],
        [3., 3., 3.]])
tensor([[6., 6., 6.],
        [6., 6., 6.]])
torch.Size([2, 3])
tensor([[6., 6., 6.],
        [6., 6., 6.]])
torch.Size([2, 3])
"""

附:二维矩阵乘法

神经网络中包含大量的 2D 张量矩阵乘法运算,而使用 torch.matmul 函数比较复杂,因此 PyTorch 提供了更为简单方便的 torch.mm(input, other, out = None) 函数。下表是 torch.matmul 函数和 torch.mm 函数的简单对比。

torch.matmul 函数支持广播,主要指的是当参与矩阵乘积运算的两个张量中其中有一个是 1D 张量,torch.matmul 函数会将其广播成 2D 张量参与运算,最后将广播添加的维度删除作为最终 torch.matmul 函数的返回结果。torch.mm 函数不支持广播,相对应的输入的两个张量必须为 2D。

import torch

input = torch.tensor([[1., 2.], [3., 4.]])
other = torch.tensor([[5., 6., 7.], [8., 9., 10.]])

result = torch.mm(input, other)
print(result)
# tensor([[21., 24., 27.],
#         [47., 54., 61.]])

总结

到此这篇关于pytorch中常用的乘法运算及相关的运算符(@和*)的文章就介绍到这了,更多相关pytorch常用乘法运算及运算符内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯