文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中mpi4py的所有基础使用案例详解

2024-04-02 19:55

关注

python中mpi4py的基础使用

大多数 MPI 程序都可以使用命令 mpiexec 运行。在实践中,运行 Python 程序如下所示:

$ mpiexec -n 4 python script.py

案例1:测试comm.send 和comm.recv函数,代码如下

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {'a': 7, 'b': 3.14}
    comm.send(data, dest=1, tag=11)
elif rank == 1:
    data = comm.recv(source=0, tag=11)

rank代表进程编号,其总数是mpiexec -n中的n的个数,最大的n受到电脑cpu内核数的限制
dest代表发送的目标,tag是一个标志位可以忽略,source为数据来源rank标志

案例2:具有非阻塞通讯的python对象

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {'a': 7, 'b': 3.14}
    req = comm.isend(data, dest=1, tag=11)
    req.wait()
elif rank == 1:
    req = comm.irecv(source=0, tag=11)
    data = req.wait()

案例3: 快速发送实例

这里的Send和Recv都是大写,用于numpy数据的传输

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

# passing MPI datatypes explicitly
if rank == 0:
    data = numpy.arange(1000, dtype='i')
    comm.Send([data, MPI.INT], dest=1, tag=77)
elif rank == 1:
    data = numpy.empty(1000, dtype='i')
    comm.Recv([data, MPI.INT], source=0, tag=77)

# automatic MPI datatype discovery
if rank == 0:
    data = numpy.arange(100, dtype=numpy.float64)
    comm.Send(data, dest=1, tag=13)
elif rank == 1:
    data = numpy.empty(100, dtype=numpy.float64)
    comm.Recv(data, source=0, tag=13)

案例4:集体通讯,广播机制

广播机制就是将当前root=0端口下的所有信息发送到任何一个进程

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {'key1' : [7, 2.72, 2+3j],
            'key2' : ( 'abc', 'xyz')}
else:
    data = None
data = comm.bcast(data, root=0)

案例5:scatter,将root=0下的数据一次分发到各个rank下

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
    data = [(i+1)**2 for i in range(size)]
else:
    data = None
data = comm.scatter(data, root=0)
assert data == (rank+1)**2

案例6:gather,将所有rank下的数据收集到root下

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:
    for i in range(size):
        assert data[i] == (i+1)**2
else:
    assert data is None

案例7,numpy的广播机制

与之前一样都是大写

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = np.arange(100, dtype='i')
else:
    data = np.empty(100, dtype='i')
comm.Bcast(data, root=0)
for i in range(100):
    assert data[i] == i

案例8:numpy的Scatter机制

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = None
if rank == 0:
    sendbuf = np.empty([size, 100], dtype='i')
    sendbuf.T[:,:] = range(size)
recvbuf = np.empty(100, dtype='i')
comm.Scatter(sendbuf, recvbuf, root=0)
assert np.allclose(recvbuf, rank)

案例9:numpy的Gather机制

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = np.zeros(100, dtype='i') + rank
recvbuf = None
if rank == 0:
    recvbuf = np.empty([size, 100], dtype='i')
comm.Gather(sendbuf, recvbuf, root=0)
if rank == 0:
    for i in range(size):
        assert np.allclose(recvbuf[i,:], i)

案例10 :allgather机制

allgather就是 scatter 加上广播机制。
rank0 = a
rank1 = b
rank2 = c
allgather后结果为
rank0 = a,b,c
rank1 = a,b,c
rank2 = a,b,c

from mpi4py import MPI
import numpy

def matvec(comm, A, x):
    m = A.shape[0] # local rows
    p = comm.Get_size()
    xg = numpy.zeros(m*p, dtype='d')
    comm.Allgather([x,  MPI.DOUBLE],
                   [xg, MPI.DOUBLE])
    y = numpy.dot(A, xg)
    return y

到此这篇关于一文读懂python中mpi4py的所有基础使用的文章就介绍到这了,更多相关python mpi4py使用内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯