文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python 协程并发数控制

2024-04-02 19:55

关注

前言:

本篇博客要采集的站点:【看历史,通天下-历史剧网】

目标数据是该站点下的热门历史事件,列表页分页规则如下所示:

http://www.lishiju.net/hotevents/p0
http://www.lishiju.net/hotevents/p1
http://www.lishiju.net/hotevents/p2

首先我们通过普通的多线程,对该数据进行采集,由于本文主要目的是学习如何控制并发数,所以每页仅输出历史事件的内容。

普通的多线程代码:

import threading
import time
import requests
from bs4 import BeautifulSoup
class MyThread(threading.Thread):
    def __init__(self, url):
        threading.Thread.__init__(self)
        self.__url = url
    def run(self):
        res = requests.get(url=self.__url)
        soup = BeautifulSoup(res.text, 'html.parser')
        title_tags = soup.find_all(attrs={'class': 'item-title'})
        event_names = [item.a.text for item in title_tags]
        print(event_names)
        print("")
if __name__ == "__main__":
    start_time = time.perf_counter()
    threads = []
    for i in range(111):  # 创建了110个线程。
        threads.append(MyThread(url="http://www.lishiju.net/hotevents/p{}".format(i)))
    for t in threads:
        t.start()  # 启动了110个线程。
    for t in threads:
        t.join()  # 等待线程结束
    print("累计耗时:", time.perf_counter() - start_time)
    # 累计耗时: 1.537718624

上述代码同时开启所有线程,累计耗时 1.5 秒,程序采集结束。

多线程之信号量

python 信号量(Semaphore)用来控制线程并发数,信号量管理一个内置的计数器。 信号量对象每次调用其 acquire()方法时,信号量计数器执行 -1 操作,调用 release()方法,计数器执行 +1 操作,当计数器等于 0 时,acquire()方法会阻塞线程,一直等到其它线程调用 release()后,计数器重新 +1,线程的阻塞才会解除。

使用 threading.Semaphore()创建一个信号量对象。

修改上述并发代码:

import threading
import time
import requests
from bs4 import BeautifulSoup
class MyThread(threading.Thread):
    def __init__(self, url):
        threading.Thread.__init__(self)
        self.__url = url
    def run(self):
        if semaphore.acquire():  # 计数器 -1
            print("正在采集:", self.__url)
            res = requests.get(url=self.__url)
            soup = BeautifulSoup(res.text, 'html.parser')
            title_tags = soup.find_all(attrs={'class': 'item-title'})
            event_names = [item.a.text for item in title_tags]
            print(event_names)
            print("")
            semaphore.release()  # 计数器 +1
if __name__ == "__main__":
    semaphore = threading.Semaphore(5)  # 控制每次最多执行 5 个线程
    start_time = time.perf_counter()
    threads = []
    for i in range(111):  # 创建了110个线程。
        threads.append(MyThread(url="http://www.lishiju.net/hotevents/p{}".format(i)))
    for t in threads:
        t.start()  # 启动了110个线程。
    for t in threads:
        t.join()  # 等待线程结束
    print("累计耗时:", time.perf_counter() - start_time)
    # 累计耗时: 2.8005530640000003

当控制并发线程数量之后,累计耗时变多。

补充知识点之 GIL:

GIL是 python 里面的全局解释器锁(互斥锁),在同一进程,同一时间下,只能运行一个线程,这就导致了同一个进程下多个线程,只能实现并发而不能实现并行

需要注意 python 语言并没有全局解释锁,只是因为历史的原因,在 CPython解析器中,无法移除 GIL,所以使用 CPython解析器,是会受到互斥锁影响的。

还有一点是在编写爬虫程序时,多线程比单线程性能是有所提升的,因为遇到 I/O 阻塞会自动释放 GIL锁。

协程中使用信号量控制并发

下面将信号量管理并发数,应用到协程代码中,在正式编写前,使用协程写法重构上述代码。

import time
import asyncio
import aiohttp
from bs4 import BeautifulSoup
async def get_title(url):
    print("正在采集:", url)
    async with aiohttp.request('GET', url) as res:
        html = await res.text()
        soup = BeautifulSoup(html, 'html.parser')
        title_tags = soup.find_all(attrs={'class': 'item-title'})
        event_names = [item.a.text for item in title_tags]
        print(event_names)
async def main():
    tasks = [asyncio.ensure_future(get_title("http://www.lishiju.net/hotevents/p{}".format(i))) for i in range(111)]
    dones, pendings = await asyncio.wait(tasks)
    # for task in dones:
    #     print(len(task.result()))
if __name__ == '__main__':
    start_time = time.perf_counter()
    asyncio.run(main())
    print("代码运行时间为:", time.perf_counter() - start_time)
    # 代码运行时间为: 1.6422313430000002

代码一次性并发 110 个协程,耗时 1.6 秒执行完毕,接下来就对上述代码,增加信号量管理代码。

核心代码是 semaphore = asyncio.Semaphore(10),控制事件循环中并发的协程数量。

import time
import asyncio
import aiohttp
from bs4 import BeautifulSoup
async def get_title(semaphore, url):
    async with semaphore:
        print("正在采集:", url)
        async with aiohttp.request('GET', url) as res:
            html = await res.text()
            soup = BeautifulSoup(html, 'html.parser')
            title_tags = soup.find_all(attrs={'class': 'item-title'})
            event_names = [item.a.text for item in title_tags]
            print(event_names)
async def main():
    semaphore = asyncio.Semaphore(10)  # 控制每次最多执行 10 个线程
    tasks = [asyncio.ensure_future(get_title(semaphore, "http://www.lishiju.net/hotevents/p{}".format(i))) for i in
             range(111)]
    dones, pendings = await asyncio.wait(tasks)
    # for task in dones:
    #     print(len(task.result()))
if __name__ == '__main__':
    start_time = time.perf_counter()
    asyncio.run(main())
    print("代码运行时间为:", time.perf_counter() - start_time)
    # 代码运行时间为: 2.227831242

aiohttp 中 TCPConnector 连接池

既然上述代码已经用到了 aiohttp 模块,该模块下通过限制同时连接数,也可以控制线程并发数量,不过这个不是很好验证,所以从数据上进行验证,先设置控制并发数为 2,测试代码运行时间为 5.56 秒,然后修改并发数为 10,得到的时间为 1.4 秒,与协程信号量控制并发数得到的时间一致。所以使用 TCPConnector 连接池控制并发数也是有效的。

import time
import asyncio
import aiohttp
from bs4 import BeautifulSoup
async def get_title(session, url):
    async with session.get(url) as res:
        print("正在采集:", url)
        html = await res.text()
        soup = BeautifulSoup(html, 'html.parser')
        title_tags = soup.find_all(attrs={'class': 'item-title'})
        event_names = [item.a.text for item in title_tags]
        print(event_names)
async def main():
    connector = aiohttp.TCPConnector(limit=1)  # 限制同时连接数
    async with aiohttp.ClientSession(connector=connector) as session:
        tasks = [asyncio.ensure_future(get_title(session, "http://www.lishiju.net/hotevents/p{}".format(i))) for i in
                 range(111)]
        await asyncio.wait(tasks)
if __name__ == '__main__':
    start_time = time.perf_counter()
    asyncio.run(main())
    print("代码运行时间为:", time.perf_counter() - start_time)

到此这篇关于python 协程并发数控制的文章就介绍到这了,更多相关python 协程内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯