文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python中scrapy下载保存图片的示例

2022-06-02 22:52

关注

        在日常爬虫练习中,我们爬取到的数据需要进行保存操作,在scrapy中我们可以使用ImagesPipeline这个类来进行相关操作,这个类是scrapy已经封装好的了,我们直接拿来用即可。

                                                                   

     在使用ImagesPipeline下载图片数据时,我们需要对其中的三个管道类方法进行重写,其中         — get_media_request   是对图片地址发起请求

   — file path   是返回图片名称

   — item_completed  返回item,将其返回给下一个即将被执行的管道类

                                                

        那具体代码是什么样的呢,首先我们需要在pipelines.py文件中,导入ImagesPipeline类,然后重写上述所说的3个方法:


from scrapy.pipelines.images import ImagesPipeline
import  scrapy
import os
 
 
class ImgsPipLine(ImagesPipeline):
    def get_media_requests(self, item, info):
        yield scrapy.Request(url = item['img_src'],meta={'item':item})
 
 
    #返回图片名称即可
    def file_path(self, request, response=None, info=None):
        item = request.meta['item']
        print('########',item)
        filePath = item['img_name']
        return filePath
 
    def item_completed(self, results, item, info):
        return item

        方法定义好后,我们需要在settings.py配置文件中进行设置,一个是指定图片保存的位置IMAGES_STORE = 'D:\\ImgPro',然后就是启用“ImgsPipLine”管道,


ITEM_PIPELINES = {
   'imgPro.pipelines.ImgsPipLine': 300,  #300代表优先级,数字越小优先级越高
}

         设置完成后,我们运行程序后就可以看到“D:\\ImgPro”下保存成功的图片。

完整代码如下:

spider文件代码:


# -*- coding: utf-8 -*-
import scrapy
from imgPro.items import ImgproItem
 
 
 
class ImgSpider(scrapy.Spider):
    name = 'img'
    allowed_domains = ['www.521609.com']
    start_urls = ['http://www.521609.com/daxuemeinv/']
 
    def parse(self, response):
        #解析图片地址和图片名称
        li_list = response.xpath('//div[@class="index_img list_center"]/ul/li')
        for li in li_list:
            item = ImgproItem()
            item['img_src'] = 'http://www.521609.com/'  + li.xpath('./a[1]/img/@src').extract_first()
            item['img_name'] = li.xpath('./a[1]/img/@alt').extract_first() + '.jpg'
            # print('***********')
            # print(item)
            yield item

items.py文件


import scrapy
 
 
class ImgproItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    img_src = scrapy.Field()
    img_name = scrapy.Field()

pipelines.py文件


from scrapy.pipelines.images import ImagesPipeline
import  scrapy
import os
from  imgPro.settings import IMAGES_STORE as IMGS
 
class ImgsPipLine(ImagesPipeline):
    def get_media_requests(self, item, info):
        yield scrapy.Request(url = item['img_src'],meta={'item':item})
 
 
    #返回图片名称即可
    def file_path(self, request, response=None, info=None):
        item = request.meta['item']
        print('########',item)
        filePath = item['img_name']
        return filePath
 
    def item_completed(self, results, item, info):
        return item

settings.py文件


import random
BOT_NAME = 'imgPro'
 
SPIDER_MODULES = ['imgPro.spiders']
NEWSPIDER_MODULE = 'imgPro.spiders'
 
IMAGES_STORE = 'D:\\ImgPro'   #文件保存路径
LOG_LEVEL = "WARNING"
ROBOTSTXT_OBEY = False
#设置user-agent
USER_AGENTS_LIST = [
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
        "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
    ]
USER_AGENT = random.choice(USER_AGENTS_LIST)
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'en',
   # 'User-Agent':"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    'User-Agent':USER_AGENT
}
 
#启动pipeline管道
ITEM_PIPELINES = {
   'imgPro.pipelines.ImgsPipLine': 300,
}

         以上即是使用ImagesPipeline下载保存图片的方法,今天突生一个疑惑,爬虫爬的好,真的是牢饭吃的饱吗?还请各位大佬解答!更多相关Python scrapy下载保存内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯