文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python神经网络MobileNetV3 small模型的复现详解

2024-04-02 19:55

关注

什么是MobileNetV3

不知道咋地,就是突然想把small也一起写了。

最新的MobileNetV3的被写在了论文《Searching for MobileNetV3》中。

它是mobilnet的最新版,据说效果还是很好的。

作为一种轻量级网络,它的参数量还是一如既往的小。

它综合了以下四个特点:

1、MobileNetV1的深度可分离卷积(depthwise separable convolutions)。

2、MobileNetV2的具有线性瓶颈的逆残差结构(the inverted residual with linear bottleneck)。

3、轻量级的注意力模型。

4、利用h-swish代替swish函数。

代码下载

large与small的区别

其实MobileNetV3中的large与small模型没有特别大的区别,主要的区别是通道数的变化与bneck的次数。

MobileNetV3(small)的网络结构

1、MobileNetV3(small)的整体结构

如上为MobileNetV3(small)的表,与MobileNetV3(large)相比,bneck的次数与通道数都有一定的下降。

如何看懂这个表呢?我们从每一列出发:

第一列Input代表mobilenetV3每个特征层的shape变化;

第二列Operator代表每次特征层即将经历的block结构,我们可以看到在MobileNetV3中,特征提取经过了许多的bneck结构;

第三、四列分别代表了bneck内逆残差结构上升后的通道数、输入到bneck时特征层的通道数。

第五列SE代表了是否在这一层引入注意力机制。

第六列NL代表了激活函数的种类,HS代表h-swish,RE代表RELU。

第七列s代表了每一次block结构所用的步长。

2、MobileNetV3特有的bneck结构

bneck结构如下图所示:

它综合了以下四个特点:

a、MobileNetV2的具有线性瓶颈的逆残差结构(the inverted residual with linear bottleneck)。

即先利用1x1卷积进行升维度,再进行下面的操作,并具有残差边。

b、MobileNetV1的深度可分离卷积(depthwise separable convolutions)。

在输入1x1卷积进行升维度后,进行3x3深度可分离卷积。

c、轻量级的注意力模型。

这个注意力机制的作用方式是调整每个通道的权重。

d、利用h-swish代替swish函数。

在结构中使用了h-swishj激活函数,代替swish函数,减少运算量,提高性能。

网络实现代码

由于keras代码没有预训练权重,所以只是把网络结构po出来。


from keras.layers import Conv2D, DepthwiseConv2D, Dense, GlobalAveragePooling2D,Input
from keras.layers import Activation, BatchNormalization, Add, Multiply, Reshape
from keras.models import Model
from keras import backend as K
alpha = 1
def relu6(x):
    # relu函数
    return K.relu(x, max_value=6.0)
def hard_swish(x):
    # 利用relu函数乘上x模拟sigmoid
    return x * K.relu(x + 3.0, max_value=6.0) / 6.0
def return_activation(x, nl):
    # 用于判断使用哪个激活函数
    if nl == 'HS':
        x = Activation(hard_swish)(x)
    if nl == 'RE':
        x = Activation(relu6)(x)
    return x
def conv_block(inputs, filters, kernel, strides, nl):
    # 一个卷积单元,也就是conv2d + batchnormalization + activation
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    x = Conv2D(filters, kernel, padding='same', strides=strides)(inputs)
    x = BatchNormalization(axis=channel_axis)(x)
    return return_activation(x, nl)
def squeeze(inputs):
    # 注意力机制单元
    input_channels = int(inputs.shape[-1])
    x = GlobalAveragePooling2D()(inputs)
    x = Dense(int(input_channels/4))(x)
    x = Activation(relu6)(x)
    x = Dense(input_channels)(x)
    x = Activation(hard_swish)(x)
    x = Reshape((1, 1, input_channels))(x)
    x = Multiply()([inputs, x])
    return x
def bottleneck(inputs, filters, kernel, up_dim, stride, sq, nl):
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    input_shape = K.int_shape(inputs)
    tchannel = int(up_dim)
    cchannel = int(alpha * filters)
    r = stride == 1 and input_shape[3] == filters
    # 1x1卷积调整通道数,通道数上升
    x = conv_block(inputs, tchannel, (1, 1), (1, 1), nl)
    # 进行3x3深度可分离卷积
    x = DepthwiseConv2D(kernel, strides=(stride, stride), depth_multiplier=1, padding='same')(x)
    x = BatchNormalization(axis=channel_axis)(x)
    x = return_activation(x, nl)
    # 引入注意力机制
    if sq:
        x = squeeze(x)
    # 下降通道数
    x = Conv2D(cchannel, (1, 1), strides=(1, 1), padding='same')(x)
    x = BatchNormalization(axis=channel_axis)(x)
    if r:
        x = Add()([x, inputs])
    return x
def MobileNetv3_small(shape = (224,224,3),n_class = 1000):
    inputs = Input(shape)
    # 224,224,3 -> 112,112,16
    x = conv_block(inputs, 16, (3, 3), strides=(2, 2), nl='HS')
    # 112,112,16 -> 56,56,16
    x = bottleneck(x, 16, (3, 3), up_dim=16, stride=2, sq=True, nl='RE')
    # 56,56,16 -> 28,28,24
    x = bottleneck(x, 24, (3, 3), up_dim=72, stride=2, sq=False, nl='RE')
    x = bottleneck(x, 24, (3, 3), up_dim=88, stride=1, sq=False, nl='RE')
    # 28,28,24 -> 14,14,40
    x = bottleneck(x, 40, (5, 5), up_dim=96, stride=2, sq=True, nl='HS')
    x = bottleneck(x, 40, (5, 5), up_dim=240, stride=1, sq=True, nl='HS')
    x = bottleneck(x, 40, (5, 5), up_dim=240, stride=1, sq=True, nl='HS')
    # 14,14,40 -> 14,14,48
    x = bottleneck(x, 48, (5, 5), up_dim=120, stride=1, sq=True, nl='HS')
    x = bottleneck(x, 48, (5, 5), up_dim=144, stride=1, sq=True, nl='HS')
    # 14,14,48 -> 7,7,96
    x = bottleneck(x, 96, (5, 5), up_dim=288, stride=2, sq=True, nl='HS')
    x = bottleneck(x, 96, (5, 5), up_dim=576, stride=1, sq=True, nl='HS')
    x = bottleneck(x, 96, (5, 5), up_dim=576, stride=1, sq=True, nl='HS')
    x = conv_block(x, 576, (1, 1), strides=(1, 1), nl='HS')
    x = GlobalAveragePooling2D()(x)
    x = Reshape((1, 1, 576))(x)
    x = Conv2D(1024, (1, 1), padding='same')(x)
    x = return_activation(x, 'HS')
    x = Conv2D(n_class, (1, 1), padding='same', activation='softmax')(x)
    x = Reshape((n_class,))(x)
    model = Model(inputs, x)
    return model
if __name__ == "__main__":
    model = MobileNetv3_small()
    model.summary()

以上就是python神经网络MobileNetV3 small模型的复现详解的详细内容,更多关于MobileNetV3 small模型复现的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯