文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

基于opencv和pillow怎么实现人脸识别系统

2023-06-21 20:36

关注

这篇文章主要讲解了“基于opencv和pillow怎么实现人脸识别系统”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“基于opencv和pillow怎么实现人脸识别系统”吧!

本文不涉及分类器、训练识别器等算法原理,仅包含对其应用(未来我也会写自己对机器学习算法原理的一些观点和了解)
首先我们需要知道的是利用现有框架做一个人脸识别系统并不难,然后就开始我们的系统开发吧。
我们的系统主要分为三个部分,然后我还会提出对补获图片不能添加中文的解决方案。我们需要完成的任务:1.人脸检测和数据收集2.训练识别器3.人脸识别和显示

在读此篇文章之前我相信你已经做了python环境部署和opencv模块的下载安装工作,现在我们还需要的模块是pillow(树莓派默认带有此模块,但如果你用的是win系统可能还需要另外安装,在终端输入pip install pillow即可),和opencv-contrib模块,cv2的face模块包含在内(当然我的Linux系统的树莓派貌似仍然默认包含了此模块,所以如果你是用的pc可能需要另外下载),以及最基本的numpy模块。

基于opencv和pillow怎么实现人脸识别系统

在开始写代码之前我们首先需要在当前运行目录中添加两个文件夹,dataset用于存放捕获到的人脸图像,方便后面训练识别器,trainer文件夹则存放了训练结果

一。人脸检测和数据收集

#数据采集cam = cv2.VideoCapture(0)#补获图片cam.set(3, 640) # set video widthcam.set(4, 480) # set video heightface_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')#导入分类器# For each person, enter one numeric face idface_id = input('\n 输入用户id')print("\n 数据采集中,请正视摄像头轻微扭转")# Initialize individual sampling face countcount = 0while(True): ret, img = cam.read()#ret为是否成功读取,是一个布尔值 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#转化为灰度图 faces = face_detector.detectMultiScale(gray, 1.3, 5,minSize=(100,100)) for (x,y,w,h) in faces:#此处faces是一个array数组或空的元组,原因我后面会分析  cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)  count += 1 # Save the captured image into the datasets folder  cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w]) cv2.imshow('image', img) k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video if k == 27:  break elif count >= 10: # Take 10 face sample and stop video  break# Do a bit of cleanupprint("\n [INFO] Exiting Program and cleanup stuff")cam.release()cv2.destroyAllWindows()

在这一部分中我们完成了人脸的补获,并将其保存在了我们建立的dataset文件夹,并将每一个人的数据用特定的id表述,这样我们就能训练能识别不同人脸的识别器。cam.set这一步中第二个参数是图像的分辨率,640×480是opencv的默认分辨率,但其仍支持800×600且最大支持1280乘1024像素,即使你的摄像头最大允许分辨率远大于这个值,opencv貌似仍不会允许你使用。之后就是haar级联分类器的导入,在配置过程中,我们已经下载了opencv自带的分类器,你只需要在文件管理器中查找haarcascade_frontalface_default.xml这个文件即可,在这个文件所在的文件夹中有许多分类器,当然如果你要识别例如苹果香蕉等物体你可能需要训练新的分类器(这也很容易做到),本文讨论的是人脸识别,因此这里不再赘述,你可以选择用其绝对路径导入,当然你也可以像我一样将其复制到你当前目录中。然后进入循环,图片的读取->转灰度图,然后是使用你已经导入的分类器识别人脸并将其用方框标出,然后将方框内的图片储存入dataset文件夹中。值得一提的是,因为分类器的算法是很慢的,所以分类器本身就有减帧处理(即使这样我的树莓派带人脸识别系统仍然很吃力),所以faces应该是大部分时间都是空的元组,小部分时间是读取到的array数组,因此你需要特别注意缩进问题,不要让分类器本身的减帧影响你视频读取并显示的帧数。

二.训练识别器

import cv2#训练器import numpy as npfrom PIL import Imageimport os# Path for face image databasepath = 'dataset'recognizer = cv2.face.LBPHFaceRecognizer_create()#识别器的导入detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")# function to get the images and label datadef getImagesAndLabels(path): imagePaths = [os.path.join(path,f) for f in os.listdir(path)]#在这里os模块可以帮助我们很好的建立路径,建议可以先查看一下相关函数的使用方法。 faceSamples=[] ids = [] for imagePath in imagePaths:  PIL_img = Image.open(imagePath).convert('L') #转化为灰度图  img_numpy = np.array(PIL_img,'uint8')#转化为数组  id = int(os.path.split(imagePath)[-1].split(".")[1])  faces = detector.detectMultiScale(img_numpy)  for (x,y,w,h) in faces:   faceSamples.append(img_numpy[y:y+h,x:x+w])   ids.append(id) return faceSamples,idsprint ("\n 训练数据中,请稍后")faces,ids = getImagesAndLabels(path)recognizer.train(faces, np.array(ids))# Save the model into trainer/trainer.ymlrecognizer.write('trainer/trainer.yml') # recognizer.save() worked on Mac, but not on Pi# Print the numer of faces trained and end programprint("\n {0} 张脸训练完毕. 程序关闭".format(len(np.unique(ids))))

在这一步我们需要对识别器按照不同id分别训练并保存结果,并将结果汇总写入trainer文件夹中命名为trainer.yml。这个文件里就是训练好的识别器。

三.人脸识别和显示

# -*- coding: UTF-8 -*-#识别器import cv2import numpy as npimport osfrom PIL import Image, ImageFont, ImageDrawpath_to_ttf = 'C:\Windows\Fonts\Microsoft YaHei UI\msyh.ttc'#ttc文件是支持汉语的字体,稍后我会说明。font1= ImageFont.truetype(path_to_ttf, size=20)recognizer = cv2.face.LBPHFaceRecognizer_create()recognizer.read('trainer/trainer.yml')#读取识别器cascadePath = "haarcascade_frontalface_default.xml"faceCascade = cv2.CascadeClassifier(cascadePath);font = cv2.FONT_HERSHEY_SIMPLEX#iniciate id counterid = 0# names related to ids: example ==> Marcelo: id=1, etcnames = ['None', '段林晨', 'Paula', 'Ilza', 'Z', 'W']#因为我们不会在人脸识别时只显示你的代号而是要显示你的具体信息。cam = cv2.VideoCapture(0)cam.set(3, 640) # set video widhtcam.set(4, 480) # set video height#最小识别的脸的大小,在识别过程中,我们不会捕获到距离你很远的街上路人的信息,这会导致很多问题,因此我们只需要识别想参与识别的人,而设置最小人脸识别大小可以规避这一点minW = 0.1*cam.get(3)minH = 0.1*cam.get(4)while True: ret, img =cam.read() gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor = 1.2, minNeighbors = 5, minSize = (int(minW), int(minH)), )#相关参数设置可以自行搜索 for(x,y,w,h) in faces:  cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)  id, confidence = recognizer.predict(gray[y:y+h,x:x+w]) # Check if confidence is less them 100 ==> "0" is perfect match  if (confidence < 100):   id = names[id]   confidence = " {0}%".format(round(100 - confidence))#confidence是置信度指数,等于100-概率,相信大家的概率统计一定比我优秀  else:   id = "未识别"   confidence = " {0}%".format(round(100 - confidence))  img=Image.fromarray(img)  draw = ImageDraw.Draw(img)  draw.text(xy=(x+5,y-5), text=str(id), font=font1,fill=(255,255,255))  img=np.array(img)  cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1) cv2.imshow('camera',img) k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video if k == 27:  break# Do a bit of cleanupprint("\n [INFO] Exiting Program and cleanup stuff")cam.release()cv2.destroyAllWindows()

在这一步中,很遗憾的是cv2.putText函数并不支持汉语的应用,即你不能通过这个函数将汉语姓名显示在视频中,虽然你可能会有英文名或干脆用汉语拼音,但这个问题我们必须要解决。因此我们在这里引入了pillow模块,我们只需要使用img.draw功能在图片上先打出你的姓名,再进行cv2.putText函数就能很好的解决这个问题,但是比较麻烦的是这两个函数涉及到的图片类型是不一样的,因此我在代码中对img和array图像进行了转换,最终完成了人脸识别系统。

感谢各位的阅读,以上就是“基于opencv和pillow怎么实现人脸识别系统”的内容了,经过本文的学习后,相信大家对基于opencv和pillow怎么实现人脸识别系统这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯