文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

利用Matplotlib实现单画布绘制多个子图

2023-02-07 12:00

关注

Matplotlib实现单画布绘制多个子图

最近研究Python数据分析,需要利用Matplotlib绘制图表,并将多个图表绘制在一张图中,经过一番折腾,利用matplotlib包下的subplot()函数即可实现此功能。

代码实现:

import matplotlib.pyplot as plt
import numpy as np

class Graph(object):
    def __init__(self):
        self.font = {
            'size': 13
        }

    plt.figure(figsize=(9, 6))
    plt.subplots_adjust(wspace=0.7, hspace=0.5)
    plt.rcParams['font.family'] = 'simhei'
    plt.rcParams['axes.unicode_minus'] = False

    def twinx(self):
        a1 = plt.subplot(231)
        plt.title('双纵轴折线图', fontdict=self.font)
        a1.plot(subjects, v1, label='v1')
        a1.set_ylabel('v1')
        a1.legend(loc='upper right', bbox_to_anchor=[-0.5, 0, 0.5, 1], fontsize=7)
        a2 = a1.twinx()
        a2.plot(subjects, v2, 'r--', label='v2')
        a2.set_ylabel('v2')
        a2.legend(loc='upper left', bbox_to_anchor=[1, 0, 0.5, 1], fontsize=7)

    def scatter(self):
        plt.subplot(232)
        plt.title('散点图', fontdict=self.font)
        x = range(50)
        y_jiangsu = [np.random.uniform(15, 25) for i in x]
        y_beijing = [np.random.uniform(5, 18) for i in x]
        plt.scatter(x, y_beijing, label='v1')
        plt.scatter(x, y_jiangsu, label='v2')
        plt.legend(loc='upper left', bbox_to_anchor=[1, 0, 0.5, 1], fontsize=7)

    def hist(self):
        plt.subplot(233)
        plt.title('直方图', fontdict=self.font)
        x = np.random.normal(size=100)
        plt.hist(x, bins=30)

    def bar_dj(self):
        plt.subplot(234)
        plt.title('堆积柱状图', fontdict=self.font)
        plt.bar(np.arange(len(v1)), v1, width=0.6, label='v1')
        for x, y in enumerate(v1):
            plt.text(x, y, y, va='top', ha='center')
        plt.bar(np.arange(len(v2)), v2, width=0.6, bottom=v1, label='v2')
        for x, y in enumerate(v2):
            plt.text(x, y + 60, y, va='bottom', ha='center')
        plt.ylim(0, 200)
        plt.legend(loc='upper left', bbox_to_anchor=[1, 0, 0.5, 1], fontsize=7)
        plt.xticks(np.arange(len(v1)), subjects)

    def bar_bl(self):
        plt.subplot(235)
        plt.title('并列柱状图', fontdict=self.font)
        plt.bar(np.arange(len(v1)), v1, width=0.4, color='tomato', label='v1')
        for x, y in enumerate(v1):
            plt.text(x - 0.2, y, y)
        plt.bar(np.arange(len(v2)) + 0.4, v2, width=0.4, color='steelblue', label='v2')
        for x, y in enumerate(v2):
            plt.text(x + 0.2, y, y)
        plt.ylim(0, 110)
        plt.xticks(np.arange(len(v1)), subjects)
        plt.legend(loc='upper left', bbox_to_anchor=[1, 0, 0.5, 1], fontsize=7)

    def barh(self):
        plt.subplot(236)
        plt.title('水平柱状图', fontdict=self.font)
        plt.barh(np.arange(len(v1)), v1, height=0.4, label='v1')
        plt.barh(np.arange(len(v2)) + 0.4, v2, height=0.4, label='v2')
        plt.legend(loc='upper left', bbox_to_anchor=[1, 0, 0.5, 1], fontsize=7)
        plt.yticks(np.arange(len(v1)), subjects)


def main():
    g = Graph()
    g.twinx()
    g.scatter()
    g.hist()
    g.bar_dj()
    g.bar_bl()
    g.barh()
    plt.savefig('坐标轴类.png')
    plt.show()


if __name__ == '__main__':
    subjects = ['语文', '数学', '英语', '物理', '化学']
    v1 = [77, 92, 83, 74, 90]
    v2 = [63, 88, 99, 69, 66]
    main()

效果如下:

可以看到,一个画板上放了6个子图。达到了我们想要的效果。

现在来解析刚刚的部分代码:

Matplotlib绘制多个动态子图

import os
import cv2
import pytz
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib.gridspec import GridSpec
from datetime import datetime
# (200,125) ,(300,185)
def ave_area(arrays, left_top=(350, 180), right_lower=(400,255)):
    np_array = arrays[left_top[0]:right_lower[0], left_top[1]:right_lower[1]].reshape(1, -1)
    delete_0 = np_array[np_array != 0]
    return np.mean(delete_0) / 1000
 
img_depths_x = []
img_depths_y = []
img_colors = []
 
dirs = r'Z:\10.1.22.215\2021-09-09-18'
for file in tqdm(os.listdir(dirs)[4000:4400]):
    try:
        img_path = os.path.join(dirs, file)
        data = np.load(img_path, allow_pickle=True)
        depthPix, colorPix = data['depthPix'], data['colorPix']
        #rgbimage = cv2.cvtColor(colorPix, cv2.COLOR_BGR2RGB)
        font = cv2.FONT_HERSHEY_SIMPLEX
        text = file.replace('.npz', '')
        cv2.putText(colorPix, text, (10, 30), font, 0.75, (0, 0, 255), 2)
        cv2.putText(depthPix, text, (10, 30), font, 0.75, (0, 0, 255), 2)
        #cv2.imshow('example', colorPix)
        cv2.waitKey(10)
        indexes = file.replace('.npz', '')
        key = datetime.strptime(indexes, '%Y-%m-%d-%H-%M-%S-%f').astimezone(pytz.timezone('Asia/ShangHai')).timestamp()  #格式时间转换
        img_depths_x.append(key)
        img_depths_y.append(ave_area(depthPix))
        img_colors.append(cv2.cvtColor(colorPix,cv2.COLOR_BGR2RGB))
 
    except:
        continue
fig = plt.figure(dpi=100,
                 constrained_layout=True,  # 类似于tight_layout,使得各子图之间的距离自动调整【类似excel中行宽根据内容自适应】
                 figsize=(15, 12)
                 )
gs = GridSpec(3, 1, figure=fig)#GridSpec将fiure分为3行3列,每行三个axes,gs为一个matplotlib.gridspec.GridSpec对象,可灵活的切片figure
ax1 = fig.add_subplot(gs[0:2, 0])
ax2 = fig.add_subplot(gs[2:3, 0])
xdata, ydata = [], []
 
rect = plt.Rectangle((350, 180), 75, 50, fill=False, edgecolor = 'red',linewidth=1)
ax1.add_patch(rect)
ln1 = ax1.imshow(img_colors[0])
ln2, = ax2.plot([], [], lw=2)
def init():
    ax2.set_xlim(img_depths_x[0], img_depths_x[-1])
    ax2.set_ylim(12, 14.5)
    return ln1, ln2
 
def update(n):
    ln1.set_array(img_colors[n])
 
    xdata.append(img_depths_x[n])
    ydata.append(img_depths_y[n])
    ln2.set_data(xdata, ydata)
    return ln1, ln2
 
ani = animation.FuncAnimation(fig,
                              update,
                              frames=range(len(img_depths_x)),
                              init_func=init,
                              blit=True)
ani.save('vis.gif', writer='imagemagick', fps=10)

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯