今天小编给大家分享一下KubeSphere中如何部署Wiki系统wiki.js并启用中文全文检索的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
背景
wiki.js 是优秀的开源 Wiki 系统,相较于 xwiki ,功能目前性上比 xwiki 不够完善,但也在不断进步。 Wiki 写作、分享、权限管理功能还是有的,胜在 UI 设计很漂亮,能满足小团队的基本知识管理需求。
以下工作是在 KubeSphere 3.2.1 + Helm 3 已经部署好的情况下进行的。
准备 storageclass
我们使用 OpenEBS 作为存储,OpenEBS 默认安装的 Local StorageSlass 在 Pod 销毁后自动删除,不适合用于我的 MySQL 存储,我们在 Local StorageClass 基础上稍作修改,创建新的 StorageClass,允许 Pod 销毁后,PV 内容继续保留,手动决定怎么处理。
apiVersion: v1items:- apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: annotations: cas.openebs.io/config: | - name: StorageType value: "hostpath" - name: BasePath value: "/var/openebs/localretain/" openebs.io/cas-type: local storageclass.beta.kubernetes.io/is-default-class: "false" storageclass.kubesphere.io/supported-access-modes: '["ReadWriteOnce"]' name: localretain provisioner: openebs.io/local reclaimPolicy: Retain volumeBindingMode: WaitForFirstConsumerkind: Listmetadata: resourceVersion: "" selfLink: ""
部署 PostgreSQL 数据库
我们团队其他项目中也需要使用 PostgreSQL, 为了提高 PostgreSQL 数据库的利用率和统一管理,我们独立部署 PostgreSQL,并在安装 wiki.js 时,配置为使用外部数据库。
准备用户名密码配置
我们使用 Secret 保存 PostgreSQL 用户密码等敏感信息。
kind: SecretapiVersion: v1metadata: name: postgres-proddata: POSTGRES_PASSWORD: xxxxtype: Opaque
以上 POSTGRES_PASSWORD 自行准备,为 base64 编码的数据。
准备数据库初始化脚本
使用 ConfigMap 保存数据库初始化脚本,在 数据库创建时,将 ConfigMap 中的数据库初始化脚本挂载到 /docker-entrypoint-initdb.d, 容器初始化时会自动执行该脚本。
apiVersion: v1kind: ConfigMapmetadata: name: wikijs-postgres-initdata: init.sql: |- CREATE DATABASE wikijs; CREATE USER wikijs with password 'xxxx'; GRANT CONNECT ON DATABASE wikijs to wikijs; GRANT USAGE ON SCHEMA public TO wikijs; GRANT SELECT,update,INSERT,delete ON ALL TABLES IN SCHEMA public TO wikijs; ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT SELECT ON TABLES TO wikijs;
以上 wikijs 用户的密码自行准备,明文保存。
准备存储
我们使用 KubeSphere 默认安装的 OpenEBS 来提供存储服务。可以通过创建 PVC 来提供持久化存储。
这里声明一个 10G 的 PVC。
kind: PersistentVolumeClaimapiVersion: v1metadata: name: postgres-prod-data finalizers: - kubernetes.io/pvc-protectionspec: accessModes: - ReadWriteOnce resources: requests: storage: 10Gi storageClassName: localretain volumeMode: Filesystem
部署 PostgreSQL 数据库
在前面的步骤准备好各种配置信息和存储后,就可以开始部署 PostgreSQL 服务了。
我们的 Kubernetes 没有配置存储阵列,使用的是 OpenEBS 作为存储,采用 Deployment 方式部署 PostgreSQL。
apiVersion: apps/v1kind: Deploymentmetadata: labels: app: postgres-prod name: postgres-prodspec: replicas: 1 selector: matchLabels: app: postgres-prod template: metadata: labels: app: postgres-prod spec: containers: - name: db imagePullPolicy: IfNotPresent image: 'abcfy2/zhparser:12-alpine' ports: - name: tcp-5432 protocol: TCP containerPort: 5432 envFrom: - secretRef: name: postgres-prod volumeMounts: - name: postgres-prod-data readOnly: false mountPath: /var/lib/postgresql/data - name: wikijs-postgres-init readOnly: true mountPath: /docker-entrypoint-initdb.d volumes: - name: postgres-prod-data persistentVolumeClaim: claimName: postgres-prod-data - name: wikijs-postgres-init configMap: name: wikijs-postgres-init
创建供其他 Pod 访问的 Service
apiVersion: v1kind: Servicemetadata: name: postgres-prodspec: selector: app: postgres-prod ports: - protocol: TCP port: 5432 targetPort: tcp-5432
完成 PostgreSQL 部署
测试略
部署 wiki.js
准备用户名密码配置
我们使用 Secret 保存 wiki.js 用于连接数据库的用户名密码等敏感信息。
apiVersion: v1kind: Secretmetadata: name: wikijsdata: DB_USER: d2lraWpz DB_PASS: xxxxtype: Opaque
以上 DB_PASS 自行准备,为 base64 编码的数据。
准备数据库连接配置
我们使用 ConfigMap 保存 wiki.js 的数据库连接信息。
apiVersion: v1kind: ConfigMapmetadata: name: wikijsdata: DB_TYPE: postgres DB_HOST: postgres-prod.infra DB_PORT: "5432" DB_NAME: wikijs HA_ACTIVE: "true"
创建数据库用户和数据库
如果 PostgreSQL 数据库里没有创建 wikijs 用户和数据 ,需要手工完成一下工作:
通过『数据库工具』连接 PostgreSQL 数据库,执行一下 SQL 语句,完成数据库和用户的创建、授权。
CREATE DATABASE wikijs;CREATE USER wikijs with password 'xxxx';GRANT CONNECT ON DATABASE wikijs to wikijs;GRANT USAGE ON SCHEMA public TO wikijs;GRANT SELECT,update,INSERT,delete ON ALL TABLES IN SCHEMA public TO wikijs;ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT SELECT ON TABLES TO wikijs;
以上 wikijs 的密码自行修改。
准备 wiki.js 的 yaml 部署文件
采用 Deployment 方式 部署 wiki.js 的 yaml 文件如下:
# wikijs-deploy.yamlapiVersion: apps/v1kind: Deploymentmetadata: labels: app: wikijs name: wikijsspec: replicas: 1 selector: matchLabels: app: wikijs template: metadata: labels: app: wikijs spec: containers: - name: wikijs image: 'requarks/wiki:2' ports: - name: http-3000 protocol: TCP containerPort: 3000 envFrom: - secretRef: name: wikijs - configMapRef: name: wikijs
创建集群内访问 wiki.js 的 Service
# wikijs-svc.yamlapiVersion: v1kind: Servicemetadata: name: wikijsspec: selector: app: wikijs ports: - protocol: TCP port: 3000 targetPort: http-3000
创建集群外访问的 Ingress
# wikijs-ing.yamlkind: IngressapiVersion: networking.k8s.io/v1metadata: name: wikijsspec: ingressClassName: nginx rules: - host: wiki.xxxx.cn http: paths: - path: / pathType: ImplementationSpecific backend: service: name: wikijs port: number: 3000
以上 host 域名需要自行配置。
执行部署
$ kubectl apply -f wikijs-deploy.yaml$ kubectl apply -f wikijs-svc.yaml$ kubectl apply -f wikijs-ing.yaml
配置 wiki.js 支持中文全文检索
wiki.js 的全文检索支持基于 PostgreSQL 的检索,也支持 Elasticsearch 等,相对来说, PostgreSQL 比较轻量级,本项目中,我们使用 PostgreSQL 的全文检索。
但是,因为 PostgreSQL 不支持中文分词,需要额外安装插件并配置启用中文分词,下面描述了为 wiki.js 启动基于 PostgreSQL 数据库中文分词的全文检索。
授予 wikijs 用户临时超管权限
通过数据库管理工具登录有超管权限的 PostgreSQL 用户,临时授予 wiki.js 用户临时超管权限,便于启动中文分词功能。
ALTER USER wikijs WITH SUPERUSER;
启用数据库的中文分词能力
使用数据库管理工具登录 PostgreSQL 数据库的 wikijs 用户,执行以下命令,启动数据库的中文分词功能。
CREATE EXTENSION pg_trgm;CREATE EXTENSION zhparser;CREATE TEXT SEARCH CONFIGURATION pg_catalog.chinese_zh (PARSER = zhparser);ALTER TEXT SEARCH CONFIGURATION chinese_zh ADD MAPPING FOR n,v,a,i,e,l WITH simple;-- 忽略标点影响ALTER ROLE wikijs SET zhparser.punctuation_ignore = ON;-- 短词复合ALTER ROLE wikijs SET zhparser.multi_short = ON;-- 测试一下select ts_debug('chinese_zh', '青春是最美好的年岁,青春是最灿烂的日子。每一个人的青春都无比宝贵,宝贵的青春只有与奋斗为伴才最闪光、最出彩。');
取消 wikijs 用户的临时超管权限
登录 PostgreSQL 数据库 wikijs 用户,取消 wikijs 用户的超管权限。
ALTER USER wikijs WITH NOSUPERUSER;
创建支持中文分词的配置 ConfigMap
# zh-parse.yamlkind: ConfigMapapiVersion: v1metadata: name: wikijs-zhparserdata: definition.yml: |- key: postgres title: Database - PostgreSQL description: Advanced PostgreSQL-based search engine. author: requarks.io logo: https://static.requarks.io/logo/postgresql.svg website: https://www.requarks.io/ isAvailable: true props: dictLanguage: type: String title: Dictionary Language hint: Language to use when creating and querying text search vectors. default: english enum: - simple - danish - dutch - english - finnish - french - german - hungarian - italian - norwegian - portuguese - romanian - russian - spanish - swedish - turkish - chinese_zh order: 1 engine.js: |- const tsquery = require('pg-tsquery')() const stream = require('stream') const Promise = require('bluebird') const pipeline = Promise.promisify(stream.pipeline) module.exports = { async activate() { if (WIKI.config.db.type !== 'postgres') { throw new WIKI.Error.SearchActivationFailed('Must use PostgreSQL database to activate this engine!') } }, async deactivate() { WIKI.logger.info(`(SEARCH/POSTGRES) Dropping index tables...`) await WIKI.models.knex.schema.dropTable('pagesWords') await WIKI.models.knex.schema.dropTable('pagesVector') WIKI.logger.info(`(SEARCH/POSTGRES) Index tables have been dropped.`) }, async init() { WIKI.logger.info(`(SEARCH/POSTGRES) Initializing...`) // -> Create Search Index const indexExists = await WIKI.models.knex.schema.hasTable('pagesVector') if (!indexExists) { WIKI.logger.info(`(SEARCH/POSTGRES) Creating Pages Vector table...`) await WIKI.models.knex.schema.createTable('pagesVector', table => { table.increments() table.string('path') table.string('locale') table.string('title') table.string('description') table.specificType('tokens', 'TSVECTOR') table.text('content') }) } // -> Create Words Index const wordsExists = await WIKI.models.knex.schema.hasTable('pagesWords') if (!wordsExists) { WIKI.logger.info(`(SEARCH/POSTGRES) Creating Words Suggestion Index...`) await WIKI.models.knex.raw(` CREATE TABLE "pagesWords" AS SELECT word FROM ts_stat( 'SELECT to_tsvector(''simple'', "title") || to_tsvector(''simple'', "description") || to_tsvector(''simple'', "content") FROM "pagesVector"' )`) await WIKI.models.knex.raw('CREATE EXTENSION IF NOT EXISTS pg_trgm') await WIKI.models.knex.raw(`CREATE INDEX "pageWords_idx" ON "pagesWords" USING GIN (word gin_trgm_ops)`) } WIKI.logger.info(`(SEARCH/POSTGRES) Initialization completed.`) }, async query(q, opts) { try { let suggestions = [] let qry = ` SELECT id, path, locale, title, description FROM "pagesVector", to_tsquery(?,?) query WHERE (query @@ "tokens" OR path ILIKE ?) ` let qryEnd = `ORDER BY ts_rank(tokens, query) DESC` let qryParams = [this.config.dictLanguage, tsquery(q), `%${q.toLowerCase()}%`] if (opts.locale) { qry = `${qry} AND locale = ?` qryParams.push(opts.locale) } if (opts.path) { qry = `${qry} AND path ILIKE ?` qryParams.push(`%${opts.path}`) } const results = await WIKI.models.knex.raw(` ${qry} ${qryEnd} `, qryParams) if (results.rows.length < 5) { const suggestResults = await WIKI.models.knex.raw(`SELECT word, word <-> ? AS rank FROM "pagesWords" WHERE similarity(word, ?) > 0.2 ORDER BY rank LIMIT 5;`, [q, q]) suggestions = suggestResults.rows.map(r => r.word) } return { results: results.rows, suggestions, totalHits: results.rows.length } } catch (err) { WIKI.logger.warn('Search Engine Error:') WIKI.logger.warn(err) } }, async created(page) { await WIKI.models.knex.raw(` INSERT INTO "pagesVector" (path, locale, title, description, "tokens") VALUES ( ?, ?, ?, ?, (setweight(to_tsvector('${this.config.dictLanguage}', ?), 'A') || setweight(to_tsvector('${this.config.dictLanguage}', ?), 'B') || setweight(to_tsvector('${this.config.dictLanguage}', ?), 'C')) ) `, [page.path, page.localeCode, page.title, page.description, page.title, page.description, page.safeContent]) }, async updated(page) { await WIKI.models.knex.raw(` UPDATE "pagesVector" SET title = ?, description = ?, tokens = (setweight(to_tsvector('${this.config.dictLanguage}', ?), 'A') || setweight(to_tsvector('${this.config.dictLanguage}', ?), 'B') || setweight(to_tsvector('${this.config.dictLanguage}', ?), 'C')) WHERE path = ? AND locale = ? `, [page.title, page.description, page.title, page.description, page.safeContent, page.path, page.localeCode]) }, async deleted(page) { await WIKI.models.knex('pagesVector').where({ locale: page.localeCode, path: page.path }).del().limit(1) }, async renamed(page) { await WIKI.models.knex('pagesVector').where({ locale: page.localeCode, path: page.path }).update({ locale: page.destinationLocaleCode, path: page.destinationPath }) }, async rebuild() { WIKI.logger.info(`(SEARCH/POSTGRES) Rebuilding Index...`) await WIKI.models.knex('pagesVector').truncate() await WIKI.models.knex('pagesWords').truncate() await pipeline( WIKI.models.knex.column('path', 'localeCode', 'title', 'description', 'render').select().from('pages').where({ isPublished: true, isPrivate: false }).stream(), new stream.Transform({ objectMode: true, transform: async (page, enc, cb) => { const content = WIKI.models.pages.cleanHTML(page.render) await WIKI.models.knex.raw(` INSERT INTO "pagesVector" (path, locale, title, description, "tokens", content) VALUES ( ?, ?, ?, ?, (setweight(to_tsvector('${this.config.dictLanguage}', ?), 'A') || setweight(to_tsvector('${this.config.dictLanguage}', ?), 'B') || setweight(to_tsvector('${this.config.dictLanguage}', ?), 'C')), ? ) `, [page.path, page.localeCode, page.title, page.description, page.title, page.description, content,content]) cb() } }) ) await WIKI.models.knex.raw(` INSERT INTO "pagesWords" (word) SELECT word FROM ts_stat( 'SELECT to_tsvector(''simple'', "title") || to_tsvector(''simple'', "description") || to_tsvector(''simple'', "content") FROM "pagesVector"' ) `) WIKI.logger.info(`(SEARCH/POSTGRES) Index rebuilt successfully.`) } }
更新 wikijs 的 Deployment
wiki.js 的基于 PostgreSQL 的全文检索引擎配置位于 /wiki/server/modules/search/postgres ,我们将前面配置的 ConfigMap 加载到这个目录。
# wikijs-zh.yamlkind: DeploymentapiVersion: apps/v1metadata: name: wikijs labels: app: wikijsspec: replicas: 1 selector: matchLabels: app: wikijs template: metadata: labels: app: wikijs spec: volumes: - name: volume-dysh5f configMap: name: wikijs-zhparser defaultMode: 420 containers: - name: wikijs image: 'requarks/wiki:2' ports: - name: http-3000 containerPort: 3000 protocol: TCP envFrom: - secretRef: name: wikijs - configMapRef: name: wikijs volumeMounts: - name: volume-dysh5f readOnly: true mountPath: /wiki/server/modules/search/postgres
配置 wiki.js ,启用基于 PostgreSQL 的全文检索
重新 apply 新的 Delployment 文件后
$ kubectl apply -f zh-parse.yaml$ kubectl apply -f wikijs-zh.yaml
打开 wiki.js 管理
点击搜索引擎
选择 Database - PostgreSQL
在 Dictionary Language 的下拉菜单里选择 chinese_zh。
点击应用,并重建索引。
完成配置。
以上就是“KubeSphere中如何部署Wiki系统wiki.js并启用中文全文检索”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。