文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

大数据处理分析的最好工具

lzzyok小精灵

lzzyok小精灵

2024-04-18 00:14

关注

  本篇文章给大家带来的就是关于数据的一些详细解析,本篇文章会教给大家数据的知识点进行分析,希望本篇文章能帮助到你,对你有所收获,希望大家仔细阅读文章。

  大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。

  在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。

  一、hadoop

  Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

  ⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

  ⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

  ⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

  ⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

  Hadoop带有用 java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

  二、HPCC

  HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。

大数据处理分析的最好工具_it_网络工程师_网络规划设计师_编程学习网

  该项目主要由五部分组成:

  1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;

  2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;

  3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;

  4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;

  5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。

  三、Storm

  Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、 Admaster等等。

  Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。

  为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel.

  据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。

  该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。

  “Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

  通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。

  五、RapidMiner

  RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

  功能和特点

  免费提供数据挖掘技术和库

  100%用Java代码(可运行在操作系统)

  数据挖掘过程简单,强大和直观

  内部XML保证了标准化的格式来表示交换数据挖掘过程

  可以用简单脚本语言自动进行大规模进程

  多层次的数据视图,确保有效和透明的数据

  图形用户界面的互动原型

  命令行(批处理模式)自动大规模应用

  Java API(应用编程接口)

  简单的插件和推广机制

  强大的可视化引擎,许多尖端的高维数据的可视化建模

  400多个数据挖掘运营商支持

  耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。

  六、 Pentaho BI

  Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

  Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过 J2EE、WebService、SOAP、HTTP、Java、Javascript、Portals等技术集成到Pentaho平台中来。 Pentaho的发行,主要以Pentaho SDK的形式进行。

  Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。

  Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。

  价值,同时被迫采用更多的系统维护时,组织会花费更多的时间。

  集中式方法的核心价值主张是实现数据使用的所有必要条件的整体方式。通过向现有系统提供必要的覆盖,该方法能够在短期和长期中实现收益。立即获益包括更大程度的企业治理监督,部分通过标准化建模促进,在大多数情况下,包括所有企业数据。随后,数据来源和数据建模更容易解释,并且更易于追踪,这加速了集成尝试。其结果是更快地洞察在组织范围内的治理协议与高度可见的数据,增加对数据资产的信任。

  随后的收益与这种洞察的性质有关,远远超过从点解决方案中收集的收益。语义图的链接数据方法集中于节点之间的关系洞察,这有助于其他技术无与伦比的看似无关的数据元素的背景文化。用户能够有更多的数据,以识别他们之间的关系,以及他们的使用情况,否则是无法发现的。

  此外,这种链接数据方法使数据发现过程在很大程度上实现了自动化,同时提供了探索性分析,用户可以在其中询问和回答尽可能多的问题。分析的结果是全面明确,并且包罗万象。采取零碎的方法,实现这些目标是困难的。。

  预期未来的发展

  培养对集中化需求的最紧迫的营销力量是大数据本身日益扩大的影响。对未来几年生产的数据量的预测表明,其扩张并不会停止和停滞。当考虑连接的设备的数量全部无限地在物联网中产生数据,以及增强现实和虚拟现实的进步,并考虑这样的数据的人工智能选项的可用性时,显而易见的是大数据的规模,速度,结构将在不久的将来大量增加。

  集中的图形感知环境为这些即将到来的技术进步做好准备。使用它作为hadoop或其他数据湖设置的基础,使其具有在这种工作负载密集型数据驱动部署中持续提供价值所需的规模和性能一致性。更重要的是,它是一个单一的手段简化每个组件的短期解决方案,点解决方案不是为大数据的需求而创建的。这种方法对于目前来说是不够的,并且对于未来大数据应用的更严格的负担当然不可行。这样的实现仅仅支持这样的观念:集中的,关系精明的语义图解表示用于以管理数据为中心的需求的工业力量的融合。

  必要的集中

  从大数据的变革性可以看出,无论何处部署数据都可以提高业务价值。它的增长可以归因于业务加速,支持技术的新生态系统,以及企业中数据类型的多样性的快速发展。它只有单纯的市场力量,需要一个整体的手段来管理每个谨慎的组件转换数据到洞察行动。这些力量的影响是消除对现有基础设施简单地附加一些附加工具的需要。

从大数据的变革性可以看出,无论何处部署数据都可以提高业务价值。它的增长可以归因于业务加速,支持技术的新生态系统,以及企业中数据类型的多样性的快速发展。它只有单纯的市场力量,需要一个整体的手段来管理每个谨慎的组件转换数据到洞察行动。这些力量的影响是消除对现有基础设施简单地附加一些附加工具的需要。

  大数据指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、整理成为人类所能解读的信息。在维克托? 迈尔-舍恩伯格及肯尼斯?库克耶编写的《大数据时代》中,大数据分析是指不用随机分析抽样调查的方法,而采用对所有数据进行分析的方法。

  基于目前对大数据的认识,通常认为大数据具备了4V特点,即Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值)。这四个特点从四个方面描述了大数据分析技术:第一,数据体量巨大。从TB级别到PB级别,甚至跃升至EB乃至ZB级别;第二,数据类型多样。包括网络文本、日志、视频、图片、地理位置信息等各种结构化和非结构化的数据都有,一切信息皆为数据。第三,处理速度快。利用各种大数据分析工具,比如hadoop和SPSS,可从各种类型的数据中快速获得高价值的信息,这一点和传统的数据分析技术有着本质的区别。第四,只要合理利用数据并对其进行正确、准确的分析,挖掘出数据内部隐藏的相关关系将会带来很高的价值回报。

  与传统的逻辑推理研究不同,大数据研究是对数量巨大的数据做统计性的搜索、比较、聚类和分类等分析归纳。大数据分析比较关注数据的相关性或称关联性,所谓“相关性”是指两个或两个以上变量的取值之间存在着某种规律。“相关分析”的目的是找出数据集里隐藏的相互关系网(关联网)。因此大数据是侧重找出相关关系而不是找出因果关系。也许正是由于大数据分析侧重于寻找相关关系,才促使大数据分析技术在商业领域广泛应用。商业的运用在于盈利,因此只要从数据挖掘中发现某种因素与增加盈利有较强的关联性,然后全面开发该相关因素就行。

  有了大量数据之后,下一步就是分析这些数据,期望通过合适的数据分析挖掘技术建立模型找到蕴藏在数据下面的客观规律。大数据分析技术经过这么多年的发展,已经形成了一些分析建模的基本思路。CRISP-DM(即“跨行业数据挖掘标准流程”的缩写)是一种业界认可的用于指导大数据分析挖掘工作的方法。

  CRISP-DM认为在大数据分析中存在一个大数据分析挖掘生命周期模型。在这个生命周期模型中存在着商业理解、数据理解、数据准备、建立模型、模型评估和结果部署这六个阶段。图1中展示了这六个阶段的关系,其中箭头的多少表示各个阶段间依赖关系的使用频率和重要程度,每个阶段之间并不一定要严格遵守顺序。实际上,大多数项目都会根据需要在这些不同的阶段之间来回移动。

  商业理解通常是指理解业务的实际类型,业务上的实际问题并且尝试尽可能多地了解数据挖掘的业务目标。数据理解是指数据理解阶段包含深入了解可用于挖掘的数据,此过程包括初始数据的收集,初始数据的描述以及数据质量的验证。数据准备是数据挖掘最重要的阶段之一,通常需要花费大量的时间。据估算,实际的数据准备工作通常占50-70%的项目时间和工作量。

  数据准备通常包含以下任务:合并数据集和记录、选择数据子集样本、汇总记录、导出新的属性、排序数据以便建模、删除或替换空白值或缺失值、分为训练数据集和测试数据集等。经过数据准备,下一阶段就是建立模型。建模时通常会执行多次迭代,选择合适的模型算法,运行多个可能的模型,然后再对这些参数进行微调以便对模型进行优化,最终选择出一个最佳的模型。在模型评估阶段,需要对项目结果是否达到业务成功标准进行评估。此步骤的前提条件是对声明的业务目标有清晰的了解,因此在前期的商业理解越发显得重要。模型评估完成之后就进入到结果部署阶段,在该阶段就是将前期选择出来的最佳模型应用到实际业务中去,并得到最终报告。

数据准备通常包含以下任务:合并数据集和记录、选择数据子集样本、汇总记录、导出新的属性、排序数据以便建模、删除或替换空白值或缺失值、分为训练数据集和测试数据集等。经过数据准备,下一阶段就是建立模型。建模时通常会执行多次迭代,选择合适的模型算法,运行多个可能的模型,然后再对这些参数进行微调以便对模型进行优化,最终选择出一个最佳的模型。在模型评估阶段,需要对项目结果是否达到业务成功标准进行评估。此步骤的前提条件是对声明的业务目标有清晰的了解,因此在前期的商业理解越发显得重要。模型评估完成之后就进入到结果部署阶段,在该阶段就是将前期选择出来的最佳模型应用到实际业务中去,并得到最终报告。

  大数据分析通过预测未来趋势及行为,做出知识的决策。大数据分析挖掘的主要目标功能有以下几个:

  第一,自动预测趋势和行为。数据挖掘自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接由数据本身得出结论。比如在GOOGLE流感分析案例中预测流感爆发的时间和地点。

  第二,关联分析。数据关联是数据库中存在的一类重要的可被发现的知识,若两个或多个变量的取值之间存在某种规律性,就称为关联。关联分析旨在找出具有强相关关系的几个属性。典型案例是啤酒和尿布的关联分析,关联分析经常用在电子商务的产品推荐中。

  第三,聚类。数据库中的一些相类似的记录可以划归到一起,即聚类。聚类常常帮助人们对事物进行再认识。在社交网络分析中经常用到聚类技术。

  大数据分析技术经过这几年的发展,已经形成了一些比较成熟稳定的模型算法。常见的模型算法有关联规则分析(Apriori)、决策树、神经网络、K-MEANS聚类、支持向量机、多元线性回归、广义线性回归、贝叶斯网络、Cox以及K近邻等。这些算法模型有的适合预测趋势和行为,有的适合关联分析,有的适合聚类分析;每种模型算法都有各自的优劣性,我们可以针对不同的场景选择合适的算法模型进行大数据分析挖掘。一些常用的模型算法的优劣性和适用场合如表1所示:

  模型算法优点缺点应用场合

  关联规则分析(Apriori)算法容易理解,能够用简单的if-then规则描述数据之间的完备关系;得出的规则具有可读性;能处理连续和离散的数据数据间可能不存在强规则;由于要查找整个数据库中的所有可能规则,可能会出现组合爆炸问题数据形式规范,分组容易;零售业和时间序列分析,电子商务中的产品推介

  决策树最容易理解,当求解基于多个复杂属性的特定目标值时其性能较佳,可以产生相互独立的规则预测连续属性值时性能较差;不能分析和时间有关的属性变量用于进行分类的场合;要求模型具有较强的解释性的时候

  神经网络通用性强,对非线性、有噪音的复杂数据分析效果良好;能处理规模较大的数据库,能预测连续数据,分类或聚类离散数据;能处理有噪音或属性值有缺失的数据无法直观解释得到的规则,结果较难解释;算法收敛得太早,容易出现局部最优解或者过拟合现象用于进行分类预测的场合,并且变量之间线性关系难以解释的情况下

  聚类(K-MEANS)应用简单,无需先验知识,能处理分类型数据,数字型数据和字符型数据聚类的个数需要人为事先定好,难以选择适当的距离函数和属性权值对数据按照属性进行归类,发现离群数据和不符合预测模型的数据

  支持向量机对数据适应性比较强,鲁棒性强经典的算法只能分为两类,分多类比较麻烦用于进行分类预测的场合,在神经网络不好用的情况下

  零售银行中的大数据类型

  在现代经济生活中,个人和家庭生活与银行零售业务联系密切,比如投资理财、电子商务、移动支付、家居生活以及外出旅游无不与银行零售业务紧密相连。正因为零售银行的客户庞大、分布广泛、业务量大且复杂,因此零售银行对业务的管理、风险的控制、客户的营销都有不同的要求。并且随着互联网金融的发展,银行零售业务越来越受到其他非银机构的挑战,零售银行对其业务的稳固及发展面临着新的压力并提出了新的要求。要应对这种挑战,不断扩展业务,创造新的利润空间,就必须对市场需求进行周密的调查研究,并且在调查研究的基础上发现价值点,而这些正好是大数据分析的用武之地。

  零售银行经过了这么多年的发展,尤其是在最近几年互联网和移动互联网快速发展的前提下,本身已经积累了大量的数据,这些数据几乎涵盖了市场和客户的各个方面。零售银行的这些数据主要包括以下几个方面:

  第一,现有客户的属性数据。客户的属性数据包括客户的性别、年龄、收入以及客户的职业。这些数据是客户在开户或者购买产品时留下来的属性数据,通过这几个属性基本上可以描述客户的大概情况,比如收入水平、资产状况等。

  第二,客户的账户信息。客户的账户信息里包含了客户的账户余额、账户类型以及账户状态。客户的账户信息记录了客户当前的一种资产状态,对零售银行分析客户以及挖掘客户起到了重要作用。

  第三,客户的交易信息。客户的交易信息里包含了客户交易的日期和时间,交易的金额以及交易的类型。通过这些我们可以知道客户交易的频度及总额,由此可以推断出客户的交易喜好以及资产能力。

  第四,客户的渠道信息。渠道信息是指客户是偏好去银行柜台办理业务,还是通过互联网客户端或者移动互联网客户端来办理业务。客户的渠道信息对客户的管理及拓展至关重要。

第四,客户的渠道信息。渠道信息是指客户是偏好去银行柜台办理业务,还是通过互联网客户端或者移动互联网客户端来办理业务。客户的渠道信息对客户的管理及拓展至关重要。

  第五,客户的行为信息。在互联网时代,各个零售银行都有网银日志和手机银行日志,这些日志记录了客户办理业务的行为信息。相对于前几个方面的数据信息,网银日志和手机银行日志信息是一种非结构化的数据信息。

  对比以上数据来源,可以发现零售银行的数据信息主要包括以下几类:客户的属性、交易习惯、渠道偏好以及行为信息。这些数据信息储存于零售银行的网银系统、客户管理系统、电子支付平台、ECIF系统、核心银行系统或者其它系统里面。这些系统对数据的保存及分析提供了极大的便利性和准确性。

  大数据分析对零售银行的商业价值

  近几年来,大数据分析在各个相关领域飞速发展,零售银行也不例外。鉴于零售银行的业务类型以及零售银行的数据类型,大数据分析在零售银行的商业价值主要存在于以下几个方面。

  第一,客户的精细分类和档案管理。零售银行为了给客户提供更加优质的服务,需要通过分析银行系统本身数据库所保留的客户资料信息,对客户进行分类管理。

  相关统计表明,只有大约20%的客户能给银行带来最大收益,因此找到这20%的优质客户就成为零售银行的一大主要目标。而根据客户的数据信息资料找出客户背后的社会、经济、消费特征,进而可以推断出客户的消费能力、消费水平和消费习惯,并可以计算出各个客户对银行的贡献率,最终根据这些特征对客户进行精细化的分类及管理。通过这些分类和管理能给零售银行带来最大的收益,而这些操作只能通过大数据分析才能实现。

  第二,客户流失的预防和精准营销。从行业经验来看,发展一个新客户的成本远远大于维持一个原有客户的成本,尤其是优质客户。如今,银行零售业务的竞争非常激烈,市场区域饱和,因此维持原有客户防止客户流失显得愈发重要。如何保留原有的客户并且不断为这些客户提供优质的增值服务是零售银行业面临的一项重要挑战和机遇。目前大数据分析可以帮助零售银行精细的定位和划分客户,从而找出具有潜在流失可能性的现有客户。通过对数据进行分析,挖掘和整理出客户流失的具体原因,客户不满意哪些产品和服务,客户消费行为的定位等等。通过大数据分析可以对不同的客户提出具有强烈吸引力的个性化营销方案,进而帮助零售银行预防客户流失进行精准营销。

  第三,产品的分析和管理。零售银行有众多的产品,这些产品适合不同的客户群体,如何对产品进行分析、管理和优化也是零售银行面临的一个难题。以往的产品分析和管理只是单纯的利用统计分析来对产品的当前状态进行描述,缺少的是深入的挖掘。而在如今的大数据时代,通过大数据分析不仅可以对产品的覆盖人群、产品的盈利能力、用户的反应、用户的留存率、产品的营销推广、产品的优化升级进行全方位的挖掘,还可以在此基础上找到新的价值增长点。通过大数据分析,零售银行对产品的把控能力必将得到更大的提高。

  第四,风险控制和管理。信用卡的使用就是零售银行面临的风险之一,客户恶意透支信用卡,逾期不还款这些都是银行面临的潜在风险。因此,如何提前识别有风险的客户,如何预防客户的恶意透支以及如何进行风险管控,这些都是零售银行面临的难题。在大数据分析大规模应用之前,银行只是简单的通过用户的背景资料来进行预防,这种方法既被动又无效。而如今,在大数据的帮助下,银行可以从客户的历史数据中分析出客户的消费行为习惯,一旦客户出现非常规的消费行为,即可认为风险指数超标从而中止交易,进而有效地防止风险的出现。

  另外,通过大数据分析也可对用户的信用等级进行评估,对信用评估得分低的客户可以重点进行风险管理和控制;对信用评估得分高的客户可以进一步挖掘出这部分客户的消费潜力进而提高零售银行的业绩。

  第五,银行经营状况分析。大数据分析不仅可以对零售银行的客户进行精准定位、营销和风险管理,也可以对零售银行的总体经营状况进行深度分析。通过数据挖掘及时了解营业状况、资金情况、利润情况等重要信息。同时,还可以结合历史同一时间的经营状况数据,挖掘出现阶段经营状况的问题以及改进的策略,进而提出在该条件下最大收益的经营方式。

  以上五点只是大数据分析对零售银行商业价值存在的主要方面,也是大数据分析对零售银行影响最大的几个层面。随着大数据分析在零售银行业的应用与发展,大数据分析对零售银行其它业务的商业价值必将得到更大的显现。

  总而言之,大数据是创新、竞争和提高生产率的新领域,蕴含着许多市场机会与利润空间;大数据所蕴藏的巨大价值必将引起包括零售银行在内的诸多行业的经营创新和企业管理的重大变革。今后,大数据分析对零售银行的影响会越来越大,零售银行业在大数据的推动下必将迎来一个新的增长机遇。

  说起大数据,可能很多人都知道这是未来互联网时代发展的一个大发向。但是大数据的兴起却不是因为互联网,也不是因为移动互联网,而是因为万物互联。

  互联网可以说是信息1.0时代,而移动互联网则是信息1.5时代,物联网呢,则是信息2.0时代。在这个万物互联的时代,它将是一个信息爆炸的时代,大数据将会在这个时代掀起一个突飞猛进。

  目前,各种智能硬件、联网设备、传感器如雨后春笋般地冒出来了。智能家居、智能可穿戴、智能汽车、智能小区、智能城市等很快就将在全球范围流行起来。而在这个万物联网的背后,数据的分析、处理、识别、预测等就变得尤为重要。

  眼下阿里云在金融云、政务云、企业云服务方面已经跑在前面,则在个人云服务、物联网数据方面领先,腾讯呢,自然在这方面要略显落后了。不过进入到今年以来,腾讯云正在加速追赶阿里。

  想要学习更多知识,那就来编程学习网教育,我们这里有通俗易懂的噢~不怕你们学不会!你的支持就是编程学习网教育最大的动力,欢迎进入编程学习网教育!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-考试认证-考试信息-考试报考
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯