文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Ubuntu16安装CUDA(9.1)和cuDNN的实现步骤(图文)

2024-04-02 19:55

关注

本篇概览

自己有一台2015年的联想笔记本,显卡是GTX950M,已安装ubuntu 16.04 LTS桌面版,为了使用其GPU完成deeplearning4j的训练工作,自己动手安装了CUDA和cuDNN,在此将整个过程记录下来,以备将来参考,整个安装过程分为以下几步:

特别问题说明

准备工作


sudo apt-get remove --purge nvidia*

禁用nouveau驱动(很重要),用vi打开文件/etc/modprobe.d/blacklist.conf,在尾部增加以下内容,然后保存退出:


blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off

关闭nouveau:


echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf

更新initramfs:


update-initramfs -u

执行reboot重启电脑

重启后,执行以下命令,应该不会有任何输出,证明nouveau已经禁用:


lsmod|grep nouveau

获取Kernel source:


sudo apt-get install linux-source

安装过程中显示信息如下图:

在这里插入图片描述

根据上图红框中的信息,可知内核版本号为,于是执行以下命令:


sudo apt-get install linux-headers-4.4.0-210-generic

下载和安装Nvidia驱动

访问Nvidia网站,地址https://www.nvidia.cn/Download/index.aspx?lang=cn,然后选择对应的显卡和操作系统,我的选择如下图所示:

在这里插入图片描述

点击上图搜索按钮后,进入下图页面,点击下载:

在这里插入图片描述

下载得到的文件名为NVIDIA-Linux-x86_64-460.84.run

关闭图形页面:


sudo service lightdm stop

给驱动文件增加可执行权限:


sudo chmod a+x NVIDIA-Linux-x86_64-460.84.run

开始安装:


sudo ./NVIDIA-Linux-x86_64-460.84.run -no-x-check -no-nouveau-check -no-opengl-files

遇到下图,选择红框:

在这里插入图片描述

遇到下图,直接回车:

在这里插入图片描述

恢复图形页面:


sudo service lightdm start

执行命令nvidia-smi,如果驱动安装成功,会显示以下内容:


will@lenovo:~/temp/202106/20$ nvidia-smi
Sun Jun 20 09:02:11 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.84       Driver Version: 460.84       CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 950M    Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   41C    P0    N/A /  N/A |      0MiB /  4046MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

从上述内容可见CUDA Version: 11.2表示该驱动对应的CUDA版本应该是11.2,正如前面所说,我这边遇到了问题,因此接下来会安装9.1版本,但是您可以选择安装11.2

安装CUDA

浏览器访问https://developer.nvidia.com/cuda-toolkit-archive,点击红框中的链接:

在这里插入图片描述

如下图,下载Linux版本:

在这里插入图片描述

继续选择x86_64:

在这里插入图片描述

选择具体的Linux版本及其版本号:

在这里插入图片描述

要下载的东西不少,一个安装程序和三个补丁:

在这里插入图片描述

上述四个文件的下载地址整理如下:

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/local_installers/cuda_9.1.85_387.26_linux.run?P0Ntu_6NLtuuEMm6fJRk1W5vl4KM7oaT1oFW870zKJ-zDw2ckKntFLOE6klRJfw2CmTa8z3Q390_6urlgc6LqjoqlIFW9gvfvDCusnINYplLaw1u8lRY8R4oVNtpNzaXU4BQcHjvdb6c6rjq20dktCcRd4640woXt1yHmD95v1Du7wdBBXq2eOY

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/1/cuda_9.1.85.1_linux.run?yeXf_7wIGlHAUw--E_YVLQZRgXv0x2i043woJVY-ydXU5Kyhc-eYQf5JmL-4mvYmlvPYCEc5RhT2sDWscX20CJbdOwpkt30kWb9vx8E4oIlajDQ3MVPvXdiKKsIOBUx-h0q0N0jSkNn80VMhW-nk8jwvRY_e6MuFzqWBaPk

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/2/cuda_9.1.85.2_linux.run?5jGZxNigaOJkaaPbMagjhSW7ebQvYGyYoqe2vBxZ1eV8qp2BzXJLxIPgAo11UgWhORirQkdJGq5b8eFh4aShBVUTmuPaasvRiMCKDZw5yjjIobGQrCEyU-LFO59AbrRER57Mxa0T1Sc97fC80IOZq8Ox2repjn7A3oYVgd8

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/3/cuda_9.1.85.3_linux.run?CxWimJTC-XROYihig-UZmH62odbJInf1fmxTZ_bsW1nQ0Zz5cL5r8qLmlMR_1j2rVhk3j8Z5lS6dpArt8frjGHH2MeVn5TefMoclam8udm-RSMMmqHXYE66hHN2D0drVEdtCwe8ZrEIYb2rpucaz9svCFE8Z319mge4Ju94

下载完毕后,执行命令chmod a+x *.run为上述四个文件增加可执行权限

安装CUDA:


sudo sh cuda_9.1.85_387.26_linux.run

遇到license时,像是用vi工具那样,输入":",再输入"q"回车,就能跳过license阅读,执行真正的安装操作了:

在这里插入图片描述

接下来是一系列提问,每一个提问的回答如下图,千万注意红框中的问题一定要选择n

在这里插入图片描述

安装完成后输出以下内容:


Installing the CUDA Toolkit in /usr/local/cuda-9.1 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Missing recommended library: libGL.so

Installing the CUDA Samples in /home/will ...
Copying samples to /home/will/NVIDIA_CUDA-9.1_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-9.1
Samples:  Installed in /home/will, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-9.1/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-9.1/lib64, or, add /usr/local/cuda-9.1/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.1/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.1/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.1 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_13425.log

打开文件~/.bashrc,在尾部增加以下两行(LD_LIBRARY_PATH如果已经存在,请参考PATH的写法改成追加):


export PATH=/usr/local/cuda-9.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64

执行命令source ~/.bashrc使配置生效

执行命令su -切换到root帐号,执行以下命令(不要用sudo,而是切到root帐号):


sudo echo "/usr/local/cuda-9.1/lib64" >> /etc/ld.so.conf

再以root身份执行以下命令:


ldconfig

执行命令exit退出root身份,现在又是普通帐号的身份了

执行命令nvcc -V检查CUDA版本,注意参数V是大写:


will@lenovo:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85

安装第一个补丁:


sudo sh cuda_9.1.85.1_linux.run

安装第二个补丁:


sudo sh cuda_9.1.85_387.26_linux.run

安装第三个补丁:


sudo sh cuda_9.1.85_387.26_linux.run

安装cuDNN

浏览器访问https://developer.nvidia.com/zh-cn/cudnn:

在这里插入图片描述

按提示登录,如果没有帐号请注册一个,登录后进入下载页面,需要点击下图红框位置才有能见到老版本:

在这里插入图片描述

选择与CUDA匹配的版本:

在这里插入图片描述

下载后解压,得到文件夹cuda,然后执行以下命令:


sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

执行检查确认的命令cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2,如果安装顺利会有以下输出:


#define CUDNN_MAJOR 7
#define CUDNN_MINOR 1
#define CUDNN_PATCHLEVEL 3
--
#define CUDNN_VERSION    (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"

至此,Ubuntu16安装CUDA(9.1)和cuDNN已经完成了,希望能给您一些参考。

到此这篇关于Ubuntu16安装CUDA(9.1)和cuDNN的实现步骤(图文)的文章就介绍到这了,更多相关Ubuntu16安装CUDA(9.1)和cuDNN内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯