文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

基于matlab对比度和结构提取的多模态解剖图像融合怎么实现

2023-06-21 21:41

关注

本篇内容主要讲解“基于matlab对比度和结构提取的多模态解剖图像融合怎么实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“基于matlab对比度和结构提取的多模态解剖图像融合怎么实现”吧!

一、图像融合简介

应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息。介绍了多模态医学图像配准与融合的概念、方法及意义。最后简单介绍了小波变换分析方法。

二、部分源代码

clear; close all; clc; warning off%% A Novel Multi-Modality Anatomical Image FusionMethod Based on Contrast and Structure Extraction% F = fuseImage(I,scale)%Inputs:%I - a mulyi-modal anatomical image sequence%scale - scale factor of dense SIFT, the default value is 16%% load images from the folder that contain multi-modal image to be fused%I=load_images('./Dataset\CT-MRI\Pair 1');I=load_images('./Dataset\MR-T1-MR-T2\Pair 1');%I=load_images('./Dataset\MR-Gad-MR-T1\Pair 1');% Show source input images figure;no_of_images = size(I,4);for i = 1:no_of_images    subplot(2,1,i); imshow(I(:,:,:,i));endsuptitle('Source Images');%%F=fuseImage(I,16);%% Output: F - the fused imageF=rgb2gray(F);figure;imshow(F);function [ F ] = fuseImage(I,scale)addpath('Pyramid_Decomposition');addpath('Guided_Filter');addpath('Dense_SIFT');tic%%[H, W, C, N]=size(I);imgs=im2double(I);IA=zeros(H,W,C,N);for i=1:NIA(:,:,:,i)=enhnc(imgs(:,:,:,i));end%%imgs_gray=zeros(H,W,N);for i=1:N    imgs_gray(:,:,i)=rgb2gray(IA(:,:,:,i));end%% %dense sift calculationdsifts=zeros(H,W,32,N, 'single');for i=1:N    img=imgs_gray(:,:,i);    ext_img=img_extend(img,scale/2-1);    [dsifts(:,:,:,i)] = DenseSIFT(ext_img, scale, 1);    end%%%local contrastcontrast_map=zeros(H,W,N);for i=1:N    contrast_map(:,:,i)=sum(dsifts(:,:,:,i),3);end%winner-take-all weighted average strategy for local contrast[x, labels]=max(contrast_map,[],3);clear x;for i=1:N    mono=zeros(H,W);    mono(labels==i)=1;    contrast_map(:,:,i)=mono;end%% Structure h = [1 -1];structure_map=zeros(H,W,N);for i=1:Nstructure_map(:,:,i) = abs(conv2(imgs_gray(:,:,i),h,'same')) + abs(conv2(imgs_gray(:,:,i),h','same')); %EQ 13   end%winner-take-all weighted average strategy for structure[a, label]=max(structure_map,[],3);clear x;for i=1:N    monoo=zeros(H,W);    monoo(label==i)=1;    structure_map(:,:,i)=monoo;     end%%weight_map=structure_map.*contrast_map;%weight map refinement using Guided Filterfor i=1:N        weight_map(:,:,i) = fastGF(weight_map(:,:,i),12,0.25,2.5); end% normalizing weight maps%weight_map = weight_map + 10^-25; %avoids division by zeroweight_map = weight_map./repmat(sum(weight_map,3),[1 1 N]);%% Pyramid Decomposition% create empty pyramidpyr = gaussian_pyramid(zeros(H,W,3));nlev = length(pyr);% multiresolution blendingfor i = 1:N    % construct pyramid from each input image       % blend    for b = 1:nlev        w = repmat(pyrW{b},[1 1 3]);                pyr{b} = pyr{b} + w .*pyrI{b};    end    end% reconstructF = reconstruct_laplacian_pyramid(pyr);tocend

三、运行结果

基于matlab对比度和结构提取的多模态解剖图像融合怎么实现

基于matlab对比度和结构提取的多模态解剖图像融合怎么实现

到此,相信大家对“基于matlab对比度和结构提取的多模态解剖图像融合怎么实现”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯