文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python3如何实现列表模糊匹配列表

2024-04-02 19:55

关注

Python3列表模糊匹配列表

B列表模糊匹配A列表

a = ['123','666','355']
b = ['2','5']
for i in range(len(b)):
    for j in range(len(a)):
        if a[j].find(b[i]) == -1:
            continue
        print(a[j])

执行结果:

在这里插入图片描述

Python 模糊匹配搜索问题

利用python库:fuzzywuzzydifflib,两个库均可实现词粒度的模糊匹配,同时可设定模糊阈值,实现关键词的提取、地址匹配、语法检查等

fuzzywuzzy

pip install fuzzywuzzy
 
from fuzzywuzzy import process
from fuzzywuzzy import fuzz

fuzzy模块

(1)模糊匹配方法

(2)实例

ratio() 简单匹配

fuzz.ratio("河南省", "河南省")
>>> 100
 
fuzz.ratio("河南", "河南省")
>>> 80

partial_ratio() 非完全匹配

fuzz.partial_ratio("河南省", "河南省")
>>> 100
 
fuzz.partial_ratio("河南", "河南省")
>>> 100

token_set_ratio() 忽略顺序匹配

fuzz.ratio("西藏 自治区", "自治区 西藏")
>>> 50
fuzz.ratio('I love YOU','YOU LOVE I')
>>> 30
 
fuzz.token_sort_ratio("西藏 自治区", "自治区 西藏") 
>>> 100
fuzz.token_sort_ratio('I love YOU','YOU LOVE I') 
>>> 100

token_set_ratio() 去重子集匹配

fuzz.ratio("西藏 西藏 自治区", "自治区 西藏")
>>> 40
 
fuzz.token_sort_ratio("西藏 西藏 自治区", "自治区 西藏")
>>> 80
 
fuzz.token_set_ratio("西藏 西藏 自治区", "自治区 西藏")
>>> 100

process模块

(1) extract提取多条数据

类似于爬虫中select,返回的是列表,其中会包含很多匹配的数据

choices = ["河南省", "郑州市", "湖北省", "武汉市"]
process.extract("郑州", choices, limit=2)
>>> [('郑州市', 90), ('河南省', 0)]
# extract之后的数据类型是列表,即使limit=1,最后还是列表,注意和下面extractOne的区别

(2)extractOne提取一条数据

提取匹配度最大的结果,返回 元组 类型, 还有就是匹配度最大的结果不一定是我们想要的数据,可以通过下面的示例和两个实战应用体会一下

process.extractOne("郑州", choices)
>>> ('郑州市', 90)
 
process.extractOne("北京", choices)
>>> ('湖北省', 45)

difflib

Difflib作为python的标准库,difflib模块提供的类和方法用来进行序列的差异化比较,它能够比对文件并生成差异结果文本或者html格式的差异化比较页面,而且支持输出可读性比较强的HTML文档

(0)get_close_matches(word, possibilities, n=3, cutoff=0.6)

import difflib
config_list = ['中国工商银行','中国农业银行','建设银行','中国人民银行','招商证券','中国农业发展银行']
query_word = '农行'
 
res = difflib.get_close_matches(query_word, config_list, 1, cutoff=0.5)
print(res)
>>>['中国农业银行']

扩展——文件比较

(1)difflib.Differ

此类比较的是文本行的差异并且产生适合人类阅读的差异结果或者增量结果,结果中各部分的表示如下:

(2)difflib.HtmlDiff

make_file(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])
 
make_table(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

 此类可以被用来创建HTML表格 (或者说包含表格的html文件) ,两边对应展示或者行对行的展示比对差异结果。以上两个方法都可以用来生成包含一个内容为比对结果的表格的html文件,并且部分内容会高亮显示。

(3)context_diff

difflib.context_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

比较a与b(字符串列表),并且返回一个差异文本行的生成器

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> for line in context_diff(s1, s2, fromfile='before.py', tofile='after.py'):
...     sys.stdout.write(line)  
*** before.py
--- after.py
***************
*** 1,4 ****
! bacon
! eggs
! ham
  guido
--- 1,4 ----
! python
! eggy
! hamster
  guido

(4) 比对两个文件,然后生成一个展示差异结果的HTML文件

import difflib
hd = difflib.HtmlDiff()
file1 = ''
with open('xxx1.py','r') as load:
    file1 = load.readlines()
    load.close()
 
file2 = ''
with open('xxx2', 'r') as mem:
    file2 = mem.readlines()
    mem.close()
 
with open('htmlout.html','a+') as fo:
    fo.write(hd.make_file(file1,file2))
    fo.close()

总结:difflib多用于文本的差异比较,用于模糊匹配精度还是不太准的,一般词的模糊匹配可用fuzzywuzzy

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯