文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用java怎么手动控制kafka的offset

2023-06-06 11:19

关注

本篇文章为大家展示了使用java怎么手动控制kafka的offset,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

之前使用kafka的KafkaStream,让每个消费者和对应的patition建立对应的流来读取kafka上面的数据,如果comsumer得到数据,那么kafka就会自动去维护该comsumer的offset,例如在获取到kafka的消息后正准备入库(未入库),但是消费者挂了,那么如果让kafka自动去维护offset,它就会认为这条数据已经被消费了,那么会造成数据丢失。

但是kafka可以让你自己去手动提交,如果在上面的场景中,那么需要我们手动commit,如果comsumer挂了 那么程序就不会执行commit这样的话 其他同group的消费者又可以消费这条数据,保证数据不丢,先要做如下设置:

//设置不自动提交,自己手动更新offsetproperties.put("enable.auto.commit", "false");

使用如下api提交:

consumer.commitSync();

注意:

刚做了个测试,如果我从kafka中取出5条数据,分别为1,2,3,4,5,如果消费者在执行一些逻辑在执行1,2,3,4的时候都失败了未提交commit,然后消费5做逻辑成功了提交了commit,那么offset也会被移动到5那一条数据那里,1,2,3,4 相当于也会丢失

如果是做消费者取出数据执行一些操作,全部都失败的话,然后重启消费者,这些数据会从失败的时候重新开始读取

所以消费者还是应该自己做容错机制

测试项目结构如下:

使用java怎么手动控制kafka的offset

其中ConsumerThreadNew类:

package com.lijie.kafka;import java.util.ArrayList;import java.util.Arrays;import java.util.List;import org.apache.kafka.clients.consumer.ConsumerRecord;import org.apache.kafka.clients.consumer.ConsumerRecords;import org.apache.kafka.clients.consumer.KafkaConsumer;import org.slf4j.Logger;import org.slf4j.LoggerFactory;public class ConsumerThreadNew implements Runnable {  private static Logger          LOG = LoggerFactory.getLogger(ConsumerThreadNew.class);  //KafkaConsumer kafka生产者  private KafkaConsumer<String, String>  consumer;  //消费者名字  private String             name;  //消费的topic组  private List<String>          topics;  //构造函数  public ConsumerThreadNew(KafkaConsumer<String, String> consumer, String topic, String name) {    super();    this.consumer = consumer;    this.name = name;    this.topics = Arrays.asList(topic);  }  @Override  public void run() {    consumer.subscribe(topics);    List<ConsumerRecord<String, String>> buffer = new ArrayList<>();    // 批量提交数量    final int minBatchSize = 1;     while (true) {      ConsumerRecords<String, String> records = consumer.poll(100);      for (ConsumerRecord<String, String> record : records) {        LOG.info("消费者的名字为:" + name + ",消费的消息为:" + record.value());        buffer.add(record);      }      if (buffer.size() >= minBatchSize) {        //这里就是处理成功了然后自己手动提交        consumer.commitSync();        LOG.info("提交完毕");        buffer.clear();      }    }  }}

MyConsume类如下:

package com.lijie.kafka;import java.util.Properties;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import org.apache.kafka.clients.consumer.KafkaConsumer;import org.slf4j.Logger;import org.slf4j.LoggerFactory;public class MyConsume {  private static Logger  LOG = LoggerFactory.getLogger(MyConsume.class);  public MyConsume() {    // TODO Auto-generated constructor stub  }  public static void main(String[] args) {    Properties properties = new Properties();    properties.put("bootstrap.servers", "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093");    //设置不自动提交,自己手动更新offset    properties.put("enable.auto.commit", "false");    properties.put("auto.offset.reset", "latest");    properties.put("zookeeper.connect", "10.0.4.141:2181,10.0.4.142:2181,10.0.4.143:2181");    properties.put("session.timeout.ms", "30000");    properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");    properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");    properties.put("group.id", "lijieGroup");    properties.put("zookeeper.connect", "192.168.80.123:2181");    properties.put("auto.commit.interval.ms", "1000");    ExecutorService executor = Executors.newFixedThreadPool(5);    //执行消费    for (int i = 0; i < 7; i++) {      executor.execute(new ConsumerThreadNew(new KafkaConsumer<String, String>(properties),        "lijietest", "消费者" + (i + 1)));    }  }}

MyProducer类如下:

package com.lijie.kafka;import java.util.Properties;import org.apache.kafka.clients.producer.KafkaProducer;import org.apache.kafka.clients.producer.ProducerRecord;public class MyProducer {  private static Properties            properties;  private static KafkaProducer<String, String>  pro;  static {    //配置    properties = new Properties();    properties.put("bootstrap.servers", "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093");    //序列化类型    properties      .put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");    properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");    //创建生产者    pro = new KafkaProducer<>(properties);  }  public static void main(String[] args) throws Exception {    produce("lijietest");  }  public static void produce(String topic) throws Exception {    //模拟message    //     String value = UUID.randomUUID().toString();    for (int i = 0; i < 10000; i++) {      //封装message      ProducerRecord<String, String> pr = new ProducerRecord<String, String>(topic, i + "");      //发送消息      pro.send(pr);      Thread.sleep(1000);    }  }}

pom文件如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">  <modelVersion>4.0.0</modelVersion>  <groupId>lijie-kafka-offset</groupId>  <artifactId>lijie-kafka-offset</artifactId>  <version>0.0.1-SNAPSHOT</version>  <dependencies>    <dependency>      <groupId>org.apache.kafka</groupId>      <artifactId>kafka_2.11</artifactId>      <version>0.10.1.1</version>    </dependency>    <dependency>      <groupId>org.apache.hadoop</groupId>      <artifactId>hadoop-common</artifactId>      <version>2.2.0</version>    </dependency>    <dependency>      <groupId>org.apache.hadoop</groupId>      <artifactId>hadoop-hdfs</artifactId>      <version>2.2.0</version>    </dependency>    <dependency>      <groupId>org.apache.hadoop</groupId>      <artifactId>hadoop-client</artifactId>      <version>2.2.0</version>    </dependency>    <dependency>      <groupId>org.apache.hbase</groupId>      <artifactId>hbase-client</artifactId>      <version>1.0.3</version>    </dependency>    <dependency>      <groupId>org.apache.hbase</groupId>      <artifactId>hbase-server</artifactId>      <version>1.0.3</version>    </dependency>    <dependency>      <groupId>org.apache.hadoop</groupId>      <artifactId>hadoop-hdfs</artifactId>      <version>2.2.0</version>    </dependency>    <dependency>      <groupId>jdk.tools</groupId>      <artifactId>jdk.tools</artifactId>      <version>1.7</version>      <scope>system</scope>      <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>    </dependency>    <dependency>      <groupId>org.apache.httpcomponents</groupId>      <artifactId>httpclient</artifactId>      <version>4.3.6</version>    </dependency>  </dependencies>  <build>    <plugins>      <plugin>        <groupId>org.apache.maven.plugins</groupId>        <artifactId>maven-compiler-plugin</artifactId>        <configuration>          <source>1.7</source>          <target>1.7</target>        </configuration>      </plugin>    </plugins>  </build></project>

补充:kafka javaAPI 手动维护偏移量

我就废话不多说了,大家还是直接看代码吧~

package com.kafka;import kafka.javaapi.PartitionMetadata;import kafka.javaapi.consumer.SimpleConsumer;import org.apache.kafka.clients.consumer.ConsumerRecord;import org.apache.kafka.clients.consumer.ConsumerRecords;import org.apache.kafka.clients.consumer.KafkaConsumer;import org.apache.kafka.clients.consumer.OffsetAndMetadata;import org.apache.kafka.common.TopicPartition;import org.junit.Test;import java.util.*;public class ConsumerManageOffet {//broker的地址,//与老版的kafka的区别是,新版本的kafka把偏移量保存到了broker,而老版本的是把偏移量保存到了zookeeper中//所以在读取数据时,应当设置broker的地址  private static String ips = "192.168.136.150:9092,192.168.136.151:9092,192.168.136.152:9092";  public static void main(String[] args) {    Properties props = new Properties();    props.put("bootstrap.servers",ips);    props.put("group.id","test02");    props.put("auto.offset.reset","earliest");    props.put("max.poll.records","10");     props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");    props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");    KafkaConsumer<String,String> consumer = new KafkaConsumer<>(props);    consumer.subscribe(Arrays.asList("my-topic"));    System.out.println("---------------------");    while(true){      ConsumerRecords<String,String> records = consumer.poll(10);      System.out.println("+++++++++++++++++++++++");      for(ConsumerRecord<String,String> record: records){        System.out.println("---");        System.out.printf("offset=%d,key=%s,value=%s%n",record.offset(),            record.key(),record.value());      }    }  }  //手动维护偏移量  @Test  public void autoManageOffset2(){    Properties props = new Properties();    //broker的地址    props.put("bootstrap.servers",ips);    //这是消费者组    props.put("group.id","groupPP");    //设置消费的偏移量,如果以前消费过则接着消费,如果没有就从头开始消费    props.put("auto.offset.reset","earliest");    //设置自动提交偏移量为false    props.put("enable.auto.commit","false");    //设置Key和value的序列化    props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");    props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");    //new一个消费者    KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);    //指定消费的topic    consumer.subscribe(Arrays.asList("my-topic"));    while(true){      ConsumerRecords<String, String> records = consumer.poll(1000);      //通过records获取这个集合中的数据属于那几个partition      Set<TopicPartition> partitions = records.partitions();      for(TopicPartition tp : partitions){        //通过具体的partition把该partition中的数据拿出来消费        List<ConsumerRecord<String, String>> partitionRecords = records.records(tp);        for(ConsumerRecord r : partitionRecords){          System.out.println(r.offset()  +"   "+r.key()+"   "+r.value());        }        //获取新这个partition中的最后一条记录的offset并加1 那么这个位置就是下一次要提交的offset        long newOffset = partitionRecords.get(partitionRecords.size() - 1).offset() + 1;        consumer.commitSync(Collections.singletonMap(tp,new OffsetAndMetadata(newOffset)));      }    }  }}

上述内容就是使用java怎么手动控制kafka的offset,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯