文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python高级-生成器(17)

2023-01-31 00:29

关注

1. 什么是⽣成器

通过列表⽣成式,我们可以直接创建⼀个列表。但是,受到内存限制,列表容量肯定是有限的。⽽且,创建⼀个包含100万个元素的列表,不仅占⽤很⼤的存储空间,如果我们仅仅需要访问前⾯⼏个元素,那后⾯绝⼤多数元素占⽤的空间都⽩⽩浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从⽽节省⼤量的空间。在Python中,这种⼀边循环⼀边计算的机制,称为⽣成器:generator。

 

2. 创建⽣成器⽅法1

要创建⼀个⽣成器,有很多种⽅法。第⼀种⽅法很简单,只要把⼀个列表⽣成式的 [ ] 改成 ( )

列表生成式

L = [2*x for x in range(1,10)]
print(L)

运行结果为:[2, 4, 6, 8, 10, 12, 14, 16, 18]

生成器

G = (2*x for x in range(1,10))
p

运行结果为:<generator object <genexpr> at 0x00000111152FC408>

创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是⼀个列表,⽽ G 是⼀个⽣成器。我们可以直接打印出L的每⼀个元素,但我们怎么打印出G的每⼀个元素呢?如果要⼀个⼀个打印出来,可以通过 next() 函数获得⽣成器的下⼀个返回:

G = (2*x for x in range(1,10))
print(G)
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))

运行结果为:2、4、6、8、10、12

G = (2*x for x in range(1,10))
print(G)
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))

运行结果为:

<generator object <genexpr> at 0x0000022CCCC8C408>
2
4
6
8
10
12
14
16
18
Traceback (most recent call last):
  File "C:\Users\Se7eN_HOU\Desktop\A.py", line 12, in <module>
    print(next(G))
StopIteration

注意:

  • ⽣成器保存的是算法,每次调⽤ next(G) ,就计算出 G 的下⼀个元素的值,直到计算到最后⼀个元素,没有更多的元素时,抛出 StopIteration 的异常。
  • 当然,这种不断调⽤ next() 实在是太变态了,正确的⽅法是使⽤ for 循环,因为⽣成器也是可迭代对象。所以,我们创建了⼀个⽣成器后,基本上永远不会调⽤ next() ,⽽是通过 for 循环来迭代它,并且不需要关⼼StopIteration 异常.

 

3. 创建⽣成器方法2

generator⾮常强⼤。如果推算的算法⽐较复杂,⽤类似列表⽣成式的 for 循环⽆法实现的时候,还可以⽤函数来实现。

⽐如,著名的斐波拉契数列(Fibonacci),除第⼀个和第⼆个数外,任意⼀个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, …

斐波拉契数列⽤列表⽣成式写不出来,但是,⽤函数把它打印出来却很容易

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        print(b)
        a,b = b,a+b
        n+=1
    return "done"

fib(5)

运行结果为:1、 1、 2、 3、 5

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第⼀个元素开始,推算出后续任意的元素,这种逻辑其实⾮常类似
generator。也就是说,上⾯的函数和generator仅⼀步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

f = fib(5)
print(next(f))
print(next(f))
print(next(f))
print(next(f))
print(next(f))
print(next(f))

运行结果为:

1
1
2
3
5
Traceback (most recent call last):
  File "C:\Users\Se7eN_HOU\Desktop\demo.py", line 16, in <module>
    print(next(f))
StopIteration: done

在上⾯fib 的例⼦,我们在循环过程中不断调⽤ yield ,就会不断中断。当然要给循环设置⼀个条件来退出循环,不然就会产⽣⼀个⽆限数列出来。同样的,把函数改成generator后,我们基本上从来不会⽤ next() 来获取下⼀个返回值,⽽是直接使⽤ for 循环来迭代:

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

for n in fib(5):
    print(n)

运行结果为:

1
1
2
3
5

但是⽤for循环调⽤generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

f = fib(5)
while True:
    try:
        x = next(f)
        print("value=%d"%x)
    except StopIteration as e:
        print("生成器返回值=%s"%e.value)
        break

运行结果为:

value=1
value=1
value=2
value=3
value=5
生成器返回值=done

 

4、_ _next_ _()方法和next()一样

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

f = fib(5)
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())

运行结果为:

1Traceback (most recent call last):

1
2
3
5
  File "C:\Users\Se7eN_HOU\Desktop\demo.py", line 16, in <module>
    print(f.__next__())
StopIteration: done

 

5.、send()

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        temp = yield b
        print(temp)
        a,b = b,a+b
        n+=1

f = fib(5)
print(f.__next__())
print(f.send("Se7eN_HOU"))
print(f.send("Se7eN"))
print(next(f))
print(f.__next__())

运行结果为:

1
Se7eN_HOU
1
Se7eN
2
None
3
None
5

通过上面的例子可以看出使用send()函数可以给生成器生成对象的时候传递参数。

总结

  • ⽣成器是这样⼀个函数,它记住上⼀次返回时在函数体中的位置。对⽣成器函数的第⼆次(或第 n 次)调⽤跳转⾄该函数中间,⽽上次调⽤的所有局部变量都保持不变。
  • ⽣成器不仅“记住”了它数据状态;⽣成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。

⽣成器的特点:

  • 1. 节约内存
  • 2. 迭代到下⼀次的调⽤时,所使⽤的参数都是第⼀次所保留下的,即是说,在整个所有函数调⽤的参数都是第⼀次所调⽤时保留的,⽽不是新创建的

 

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯