文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python数据分析:数据探索和预测

2024-02-17 08:04

关注

导言

数据科学已日益兴起,并已广泛用于各个行业。Pandas 是一种用于数据操纵和建模的开源库,是数据科学家的宝贵工具。在这篇文章中,我们将探索如何使用 Pandas 进行数据探索和建模。

数据探索

数据探索是数据科学过程中至关重要的第一步,它使我们能对数据有一个直观的认识。使用 Pandas,我们可以加载数据并查看其内容。

import numpy as np
import numpy as np
import matplotlib.pyplot as plts
data = pd.read_csv("data.csv")

表格式输出提供数据的透视,而图表则可帮助我们可视化数据以寻找趋势和异常值。

data.head()
data.hist()
plt.show()

数据预処理

在建模数据前,通常需要进行数据预処理以确保数据的完整性和一致性。这可能涉及清除缺失值、标准化特征或将类别数据转换为可供模型训练的数字形式。

data.dropna(inplace=True)
data = (data - data.min()) / (data.max() - data.min())
data["category"] = data["category].astype("category")

数据建模

一旦数据已准备好,我们就可以开始建模。Pandas 内置对用于常见统计建模的各种库的支持,例如线性回归、逻辑回归和决策树。

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(data[["feature1", "feature2"]], data["target"])

模型评估

训练完模型后,下一步是评估其性能。我们可以使用诸如混淆矩阵、准确率、召回率 F1-score 等评价指标。

import sklearn.matrics as metics
predictions = model.predict(x_test)
print(metices.confusion_matrix(y_test, predictions))
print(metices.accuracy_score(y_test, predictions))

总结

使用 Pandas 进行数据探索和建模是数据科学流程的基石。Pandas 的直观语法和内置对统计建模库的支持使其非常适合快速高效地进行数据科学。随着我们在数据科学领域的不断进步,保持对 Pandas 的熟练将使我们驾驭数据驱的洞察力和推动决策的不断变化格局中受益匪浅。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯