Help on class complex in module __builtin__:
class complex(object)
| complex(real[, imag]) -> complex number
|
| Create a complex number from a real part and an optional imaginary part.
| This is equivalent to (real + imag*1j) where imag defaults to 0.
|
| Methods defined here:
|
| __abs__(...)
| x.__abs__() <==> abs(x)
|
| __add__(...)
| x.__add__(y) <==> x+y
|
| __coerce__(...)
| x.__coerce__(y) <==> coerce(x, y)
|
| __div__(...)
| x.__div__(y) <==> x/y
|
| __divmod__(...)
| x.__divmod__(y) <==> divmod(x, y)
|
| __eq__(...)
| x.__eq__(y) <==> x==y
|
| __float__(...)
| x.__float__() <==> float(x)
|
| __floordiv__(...)
| x.__floordiv__(y) <==> x//y
|
| __ge__(...)
| x.__ge__(y) <==> x>=y
|
| __getattribute__(...)
| x.__getattribute__('name') <==> x.name
|
| __getnewargs__(...)
|
| __gt__(...)
| x.__gt__(y) <==> x>y
|
| __hash__(...)
| x.__hash__() <==> hash(x)
|
| __int__(...)
| x.__int__() <==> int(x)
|
| __le__(...)
| x.__le__(y) <==> x<=y
|
| __long__(...)
| x.__long__() <==> long(x)
|
| __lt__(...)
| x.__lt__(y) <==> x<y
|
| __mod__(...)
| x.__mod__(y) <==> x%y
|
| __mul__(...)
| x.__mul__(y) <==> x*y
|
| __ne__(...)
| x.__ne__(y) <==> x!=y
|
| __neg__(...)
| x.__neg__() <==> -x
|
| __nonzero__(...)
| x.__nonzero__() <==> x != 0
|
| __pos__(...)
| x.__pos__() <==> +x
|
| __pow__(...)
| x.__pow__(y[, z]) <==> pow(x, y[, z])
|
| __radd__(...)
| x.__radd__(y) <==> y+x
|
| __rdiv__(...)
| x.__rdiv__(y) <==> y/x
|
| __rdivmod__(...)
| x.__rdivmod__(y) <==> divmod(y, x)
|
| __repr__(...)
| x.__repr__() <==> repr(x)
|
| __rfloordiv__(...)
| x.__rfloordiv__(y) <==> y//x
|
| __rmod__(...)
| x.__rmod__(y) <==> y%x
|
| __rmul__(...)
| x.__rmul__(y) <==> y*x
|
| __rpow__(...)
| y.__rpow__(x[, z]) <==> pow(x, y[, z])
|
| __rsub__(...)
| x.__rsub__(y) <==> y-x
|
| __rtruediv__(...)
| x.__rtruediv__(y) <==> y/x
|
| __str__(...)
| x.__str__() <==> str(x)
|
| __sub__(...)
| x.__sub__(y) <==> x-y
|
| __truediv__(...)
| x.__truediv__(y) <==> x/y
|
| conjugate(...)
| complex.conjugate() -> complex
|
| Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| imag
| the imaginary part of a complex number
|
| real
| the real part of a complex number
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| __new__ = <built-in method __new__ of type object>
| T.__new__(S, ...) -> a new object with type S, a subtype of T
class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If the first parameter is a string, it will be interpreted as a complex number and the function must be called without a second parameter. The second parameter can never be a string. Each argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion function like int(), long() and float(). If both arguments are omitted, returns 0j.
Note When converting from a string, the string must not contain whitespace around the central + or - operator. For example, complex('1+2j') is fine, but complex('1 + 2j') raises ValueError.
The complex type is described in Numeric Types — int, float, long, complex.
中文说明:
创建一个值为real + imag * j的复数或者转化一个字符串或数为复数。如果第一个参数为字符串,则不需要指定第二个参数。
参数real: int, long, float或字符串;
参数imag: int, long, float。
>>> complex(5,3)
(5+3j)
>>> complex(7)
(7+0j)
>>> complex("56")
(56+0j)
>>> complex("7+8j")
(7+8j)
>>> complex("7 + 8j")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: complex() arg is a malformed string