文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python实现监控内存使用情况和代码执行时间

2023-01-28 12:01

关注

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?”

在开发过程中,我很确定我们大多数人都会想知道这一点,而且通常情况下存在开发空间。在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。

time 模块

这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:

importtime
 
 start_time=time.time()
 result=5+2
 end_time=time.time()
 
 print('Time taken = {} sec'.format(end_time-start_time))

下面的例子显示了for循环和列表推导式在时间上的差异:

importtime
 
 # for loop vs. list comp
 list_comp_start_time=time.time()
 result= [iforiinrange(0,1000000)]
 list_comp_end_time=time.time()
 print('Time taken for list comp = {} sec'.format(list_comp_end_time-list_comp_start_time))
 
 result=[]
 for_loop_start_time=time.time()
 foriinrange(0,1000000):
     result.append(i)
 for_loop_end_time=time.time()
 print('Time taken for for-loop = {} sec'.format(for_loop_end_time-for_loop_start_time))
 
 list_comp_time=list_comp_end_time-list_comp_start_time
 for_loop_time=for_loop_end_time-for_loop_start_time
 print('Difference = {} %'.format((for_loop_time-list_comp_time)/list_comp_time*100))

我们都知道for会慢一些

Time taken for list comp = 0.05843973159790039 sec
 Time taken for for-loop = 0.06774497032165527 sec
 Difference = 15.922795107582594 %

%%time 魔法命令

魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。

在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。

%%time
 defconvert_cms(cm, unit='m'):
     '''
     Function to convert cm to m or feet
     '''
     ifunit=='m':
         returncm/100
     returncm/30.48
 
 convert_cms(1000)

结果如下:

CPU times: user 24 µs, sys: 1 µs, total: 25 µs
 Wall time: 28.1 µs
 
 Out[8]: 10.0

这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。

line_profiler

前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。

这里我们需要使用line_profiler包。使用pip install line_profiler。

importline_profiler
 
 defconvert_cms(cm, unit='m'):
     '''
     Function to convert cm to m or feet
     '''
     ifunit=='m':
         returncm/100
     returncm/30.48
 
 # Load the profiler
 %load_extline_profiler
 
 # Use the profiler's magic to call the method
 %lprun-fconvert_cmsconvert_cms(1000, 'f')

输出结果如下:

Timer unit: 1e-06 s
 
 Total time: 4e-06 s
 File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
 Function: convert_cms at line 1
 
 Line #      Hits         Time  Per Hit   % Time  Line Contents
 ==============================================================
      1                                           def convert_cms(cm, unit='m'):
      2                                               '''
      3                                               Function to convert cm to m or feet
      4                                               '''
      5         1          2.0      2.0     50.0      if unit == 'm':
      6                                                   return cm/100
      7         1          2.0      2.0     50.0      return cm/30.48

可以看到line_profiler提供了每行代码所花费时间的详细信息。

可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。

memory_profiler

与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。

要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况

from conversions import convert_cms_f
 import memory_profiler
 
 %load_ext memory_profiler
 
 %mprun -f convert_cms_f convert_cms_f(1000, 'f')

convert_cms_f函数在单独的文件中定义,然后导入。结果如下:

Line #    Mem usage    Increment  Occurrences   Line Contents
 =============================================================
      1     63.7 MiB     63.7 MiB           1   def convert_cms_f(cm, unit='m'):
      2                                             '''
      3                                             Function to convert cm to m or feet
      4                                             '''
      5     63.7 MiB      0.0 MiB           1       if unit == 'm':
      6                                                 return cm/100
      7     63.7 MiB      0.0 MiB           1       return cm/30.48

memory_profiler 提供对每行代码内存使用情况的详细了解。

这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB = 1.048576 1MB

但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。

虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具

总结

虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。

以上就是Python实现监控内存使用情况和代码执行时间的详细内容,更多关于Python监控内存的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯