文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用Python pandas读取CSV文件应该注意什么?

2024-04-02 19:55

关注

示例文件

将以下内容保存为文件 people.csv


id,姓名,性别,出生日期,出生地,职业,爱好
1,张小三,m,1992-10-03,北京,工程师,足球
2,李云义,m,1995-02-12,上海,程序员,读书 下棋
3,周娟,女,1998-03-25,合肥,护士,音乐,跑步
4,赵盈盈,Female,2001-6-32,,学生,画画
5,郑强强,男,1991-03-05,南京(nanjing),律师,历史-政治

如果一切正常的话,在Jupyter Notebook 中应该显示以下内容:

在这里插入图片描述

文件编码

文件编码格式是最容易出错的问题之一。如果编码格式不正确,就会完全读取不出文件内容,出现类似于以下的错误, 让人完全不知所措:


---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-6-8659adefcfa6> in <module>
----> 1 pd.read_csv('people.csv', encoding='gb2312')

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
    683         )
    684 
--> 685         return _read(filepath_or_buffer, kwds)
    686 
    687     parser_f.__name__ = name

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds)
    455 
    456     # Create the parser.
--> 457     parser = TextFileReader(fp_or_buf, **kwds)
    458 
    459     if chunksize or iterator:

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds)
    893             self.options["has_index_names"] = kwds["has_index_names"]
    894 
--> 895         self._make_engine(self.engine)
    896 
    897     def close(self):

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine)
   1133     def _make_engine(self, engine="c"):
   1134         if engine == "c":
-> 1135             self._engine = CParserWrapper(self.f, **self.options)
   1136         else:
   1137             if engine == "python":

C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds)
   1915         kwds["usecols"] = self.usecols
   1916 
-> 1917         self._reader = parsers.TextReader(src, **kwds)
   1918         self.unnamed_cols = self._reader.unnamed_cols
   1919 

pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.__cinit__()

pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._get_header()

UnicodeDecodeError: 'gb2312' codec can't decode byte 0x93 in position 2: illegal multibyte sequence

目前对于中文而言,最常使用的有 utf-8gb2312 两种格式,只需要指定正确的编码。在不知道编码的情况下,只需要尝试两次即可。padas默认的文件编码格式是 utf-8,所以如果出现以上错误,只需使用 encoding=gb2312 再尝试一下即可,如 pd.read_csv(file, encoding='gb2312')

空值

空值是csv中也非常常见,比如以下内容:


import pandas as pd
df = pd.read_csv('people.csv')
v1=df['出生地'][3]
print(v1, type(v1))

输出为:


nan <class 'float'>

由此可见,空值也是有数据类型的,为 float 类型。

如何判断空值有两种方法,可以使用 math.isnan(x) 也可以使用 isinstance(float)。我们知道,DateFrame对象是包括Series对象,而在一个Series对象中,所有的数据类型默认是一样的,所以如果其数据类型推断为字符串(str),那么直接使用 math.isnan(x) 则会报错 TypeError: must be real number, not str 错误,即必需为实数,不能是字符串。所以,这时我们还需要使用 isinstance(x, flaot) 方法。
具体请看这个示例:


df.出生地=df.出生地.map(lambda x: '其他' if isinstance(x, float) else x)
df

在这里插入图片描述

函数映射

方法1:直接使用labmda表达式

需要对数据列进行复杂操作的时候,我们可以使用以下函数时行相应的操作。


df=df.fillna('未知')
df.爱好=df.爱好.map(lambda x: x.split(' ')[0].split('-')[0].split(',')[0])
df

在这里插入图片描述

方法二:使用自定义函数

在进行映射时,如果操作比较简单,可以使用字典的方式进行数值映射映射(参见下文)。但是如果操作比较复杂,则需要使用函数进行映射。请看这个示例,读取到性别时,内容有 ‘m', ‘M', ‘Female' 等内容,现在需要其全部转换为


def set_sex(s):
    if s.lower() == 'm' or s.lower() == 'male':
        return '男'
    elif s.lower() == 'female':
        return '女'        
    return s

df = pd.read_csv('people.csv', converters={'性别': lambda x : set_sex(x)})
df

在这里插入图片描述

方法三:使用数值字典映射

在数据处理时,数值型往往比字符串效率更高,所以在可能的情况下,我们希望将数据转换成字符串处理。请看这个示例,将输入的数据的性别中的男性转换为1 女性转换为0。操作如下:

在这里插入图片描述

到此这篇关于使用Python pandas读取CSV文件应该注意什么?的文章就介绍到这了,更多相关pandas读取CSV文件内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯