文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pytorch深度学习addmm()和addmm_()函数用法解析

2024-04-02 19:55

关注

一、函数解释

在torch/_C/_VariableFunctions.py的有该定义,意义就是实现一下公式:

换句话说,就是需要传入5个参数,mat里的每个元素乘以beta,mat1和mat2进行矩阵乘法(左行乘右列)后再乘以alpha,最后将这2个结果加在一起。但是这样说可能没啥概念,接下来博主为大家写上一段代码,大家就明白了~

    def addmm(self, beta=1, mat, alpha=1, mat1, mat2, out=None): # real signature unknown; restored from __doc__
        """
        addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor
        Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
        The matrix :attr:`mat` is added to the final result.
        If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
        :math:`(m \times p)` tensor, then :attr:`mat` must be
        :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
        and :attr:`out` will be a :math:`(n \times p)` tensor.
        :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
        :attr:`mat1` and :attr`mat2` and the added matrix :attr:`mat` respectively.
        .. math::
            out = \beta\ mat + \alpha\ (mat1_i \mathbin{@} mat2_i)
        For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
        :attr:`alpha` must be real numbers, otherwise they should be integers.
        Args:
            beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
            mat (Tensor): matrix to be added
            alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
            mat1 (Tensor): the first matrix to be multiplied
            mat2 (Tensor): the second matrix to be multiplied
            out (Tensor, optional): the output tensor
        Example::
            >>> M = torch.randn(2, 3)
            >>> mat1 = torch.randn(2, 3)
            >>> mat2 = torch.randn(3, 3)
            >>> torch.addmm(M, mat1, mat2)
            tensor([[-4.8716,  1.4671, -1.3746],
                    [ 0.7573, -3.9555, -2.8681]])
        """
        pass

二、代码范例

1.先摆出代码,大家可以先复制粘贴运行一下,在之后博主会一一讲解

"""
@author:nickhuang1996
"""
import torch
rectangle_height = 3
rectangle_width = 3
inputs = torch.randn(rectangle_height, rectangle_width)
for i in range(rectangle_height):
    for j in range(rectangle_width):
        inputs[i] = i * torch.ones(rectangle_width)
'''
inputs and its transpose
-->inputs   =   tensor([[0., 0., 0.],
                        [1., 1., 1.],
                        [2., 2., 2.]])
-->inputs_t =   tensor([[0., 1., 2.],
                        [0., 1., 2.],
                        [0., 1., 2.]])
'''
print("inputs:\n", inputs)
inputs_t = inputs.t()
print("inputs_t:\n", inputs_t)
'''
inputs_t @ inputs_t    [[0., 1., 2.],       [[0., 1., 2.],          [[0., 3., 6.]
                    =   [0., 1., 2.],   @    [0., 1., 2.],     =     [0., 3., 6.]
                        [0., 1., 2.]]        [0., 1., 2.]]           [0., 3., 6.]]
'''
'''a, b, c and d = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
a = torch.addmm(input=inputs, mat1=inputs_t, mat2=inputs_t)
b = inputs.addmm(mat1=inputs_t, mat2=inputs_t)
c = torch.addmm(input=inputs, beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
d = inputs.addmm(beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
'''e and f = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
e = torch.addmm(inputs, inputs_t, inputs_t)
f = inputs.addmm(inputs_t, inputs_t)
'''1 * inputs + 1 * (inputs_t @ inputs_t)'''
g = inputs.addmm(1, inputs_t, inputs_t)
'''2 * inputs + 1 * (inputs_t @ inputs_t)'''
g2 = inputs.addmm(2, inputs_t, inputs_t)
'''h = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
h = inputs.addmm(1, 1, inputs_t, inputs_t)
'''h12 = 1 * inputs + 2 * (inputs_t @ inputs_t)'''
h12 = inputs.addmm(1, 2, inputs_t, inputs_t)
'''h21 = 2 * inputs + 1 * (inputs_t @ inputs_t)'''
h21 = inputs.addmm(2, 1, inputs_t, inputs_t)
print("a:\n", a)
print("b:\n", b)
print("c:\n", c)
print("d:\n", d)
print("e:\n", e)
print("f:\n", f)
print("g:\n", g)
print("g2:\n", g2)
print("h:\n", h)
print("h12:\n", h12)
print("h21:\n", h21)
print("inputs:\n", inputs)
'''inputs = 1 * inputs - 2 * (inputs @ inputs_t)'''
'''
inputs @ inputs_t       [[0., 0., 0.],       [[0., 1., 2.],          [[0., 0., 0.]
                    =    [1., 1., 1.],   @    [0., 1., 2.],     =     [0., 3., 6.]
                         [2., 2., 2.]]        [0., 1., 2.]]           [0., 6., 12.]]
'''
inputs.addmm_(1, -2, inputs, inputs_t)  # In-place
print("inputs:\n", inputs)

2.其中

inputs是一个3×3的矩阵,为

tensor([[0., 0., 0.],
        [1., 1., 1.],
        [2., 2., 2.]])

inputs_t也是一个3×3的矩阵,是inputs的转置矩阵,为

tensor([[0., 1., 2.],
        [0., 1., 2.],
        [0., 1., 2.]])

* inputs_t @ inputs_t为

'''
inputs_t @ inputs_t    [[0., 1., 2.],       [[0., 1., 2.],          [[0., 3., 6.]
                    =   [0., 1., 2.],   @    [0., 1., 2.],     =     [0., 3., 6.]
                        [0., 1., 2.]]        [0., 1., 2.]]           [0., 3., 6.]]
'''

3.代码中a,b,c和d展示的是完全形式,即标明了位置参数和传入参数。可以看到input这个位置参数可以写在函数的前面,即

torch.addmm(input, mat1, mat2) = inputs.addmm(mat1, mat2)

完成的公式为:

1 × inputs + 1 ×(inputs_t @ inputs_t)

'''a, b, c and d = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
a = torch.addmm(input=inputs, mat1=inputs_t, mat2=inputs_t)
b = inputs.addmm(mat1=inputs_t, mat2=inputs_t)
c = torch.addmm(input=inputs, beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
d = inputs.addmm(beta=1, mat1=inputs_t, mat2=inputs_t, alpha=1)
a:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
b:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
c:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
d:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])

4.下面的例子更好了说明了input参数的位置可变性,并且beta和alpha都缺省了:

完成的公式为:

1 × inputs + 1 ×(inputs_t @ inputs_t)

'''e and f = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
e = torch.addmm(inputs, inputs_t, inputs_t)
f = inputs.addmm(inputs_t, inputs_t)
e:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
f:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])

5.加一个参数,实际上是添加了beta这个参数

完成的公式为:

g   = 1 × inputs + 1 ×(inputs_t @ inputs_t)

g2 = 2 × inputs + 1 ×(inputs_t @ inputs_t)

'''1 * inputs + 1 * (inputs_t @ inputs_t)'''
g = inputs.addmm(1, inputs_t, inputs_t)
'''2 * inputs + 1 * (inputs_t @ inputs_t)'''
g2 = inputs.addmm(2, inputs_t, inputs_t)
g:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
g2:
tensor([[ 0.,  3.,  6.],
        [ 2.,  5.,  8.],
        [ 4.,  7., 10.]])

6.再加一个参数,实际上是添加了alpha这个参数

完成的公式为:

h   = 1 × inputs + 1 ×(inputs_t @ inputs_t)

h12 = 1 × inputs + 2 ×(inputs_t @ inputs_t)

h21 = 2 × inputs + 1 ×(inputs_t @ inputs_t)

'''h = 1 * inputs + 1 * (inputs_t @ inputs_t)'''
h = inputs.addmm(1, 1, inputs_t, inputs_t)
'''h12 = 1 * inputs + 2 * (inputs_t @ inputs_t)'''
h12 = inputs.addmm(1, 2, inputs_t, inputs_t)
'''h21 = 2 * inputs + 1 * (inputs_t @ inputs_t)'''
h21 = inputs.addmm(2, 1, inputs_t, inputs_t)
h:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
h12:
tensor([[ 0.,  6., 12.],
        [ 1.,  7., 13.],
        [ 2.,  8., 14.]])
h21:
tensor([[ 0.,  3.,  6.],
        [ 2.,  5.,  8.],
        [ 4.,  7., 10.]])

7.当然,以上的步骤inputs没有变化,还是为

inputs:
tensor([[0., 0., 0.],
        [1., 1., 1.],
        [2., 2., 2.]])

8.addmm_()的操作和addmm()函数功能相同,区别就是addmm_()有inplace的操作,也就是在原对象基础上进行修改,即把改变之后的变量再赋给原来的变量。例如:

inputs的值变成了改变之后的值,不用再去写 某个变量=addmm_() 了,因为inputs就是改变之后的变量!

*inputs@ inputs_t为

'''
inputs @ inputs_t       [[0., 0., 0.],       [[0., 1., 2.],          [[0., 0., 0.]
                    =    [1., 1., 1.],   @    [0., 1., 2.],     =     [0., 3., 6.]
                         [2., 2., 2.]]        [0., 1., 2.]]           [0., 6., 12.]]
'''

完成的公式为:

inputs   = 1 × inputs - 2 ×(inputs @ inputs_t)

'''inputs = 1 * inputs - 2 * (inputs @ inputs_t)'''
inputs.addmm_(1, -2, inputs, inputs_t)  # In-place
inputs:
tensor([[  0.,   0.,   0.],
        [  1.,  -5., -11.],
        [  2., -10., -22.]])

三、代码运行结果

inputs:
tensor([[0., 0., 0.],
        [1., 1., 1.],
        [2., 2., 2.]])
inputs_t:
tensor([[0., 1., 2.],
        [0., 1., 2.],
        [0., 1., 2.]])
a:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
b:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
c:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
d:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
e:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
f:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
g:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
g2:
tensor([[ 0.,  3.,  6.],
        [ 2.,  5.,  8.],
        [ 4.,  7., 10.]])
h:
tensor([[0., 3., 6.],
        [1., 4., 7.],
        [2., 5., 8.]])
h12:
tensor([[ 0.,  6., 12.],
        [ 1.,  7., 13.],
        [ 2.,  8., 14.]])
h21:
tensor([[ 0.,  3.,  6.],
        [ 2.,  5.,  8.],
        [ 4.,  7., 10.]])
inputs:
tensor([[0., 0., 0.],
        [1., 1., 1.],
        [2., 2., 2.]])
inputs:
tensor([[  0.,   0.,   0.],
        [  1.,  -5., -11.],
        [  2., -10., -22.]])

以上就是Pytorch中addmm()和addmm_()函数用法解析的详细内容,更多关于Pytorch函数addmm() addmm_()的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯