文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python读取nc数据并绘图的方法实例

2024-04-02 19:55

关注

获取nc数据的相关信息

from netCDF4 import Dataset
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt

path = "F:\\OCO2.SIF.all.daily.2001.nc"
csv_path = "F:\\test.csv"
dst = Dataset(path, mode='r', format="netCDF4")

 print(dst.variables.keys())
    data = dst.variables['all_daily_sif'][:]
    print(data.shape)
    # 输出结果如下:
    # dict_keys(['lat', 'lon', 'doy', 'all_daily_sif'])
    # (92, 360, 720)
    #可见有92个时间序列,经度(lon)、纬度(lat)的取值有720,360个

    # # 查看数据经纬度范围,经度-179.75~179.75,其中负值为西经,正值为东经;纬度正为北纬,负为南纬
    # # 格点分辨率为0.5度
    long = dst.variables['lon'][:]
    lati = dst.variables['lat'][:]
    print(long[0], long[-1], lati[0], lati[-1])
    print(long.shape, lati.shape)

绘图

用matplotlib绘图

参考文献1

 # plt对某个doy的全球sif值作图。左半部分为西半球,右边是东半球
    # 选了doy为10的sif数据作图
    plt.contourf(long, lati, data[10, :, :] )
    plt.colorbar(label="Sif", orientation="horizontal")
    plt.show()

运行结果:

用Basemap绘图

参考文献2

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

    lat = dst.variables['lat'][:]
    lon = dst.variables['lon'][:]
    data = dst.variables['all_daily_sif'][:]    
    data[10] = data[10]
    # use .shape function to check that arrays have
    # the correct size.
    # e.g. lon.shape
    print(data[10].shape)

    lon0 = lon.mean()
    lat0 = lat.mean()
    # 设置投影方式:cyl为圆柱投影、还可设置merc为mercator投影 llcrnrlat为起始lat;urcrnrlat为终止lat
    # m = Basemap(projection='merc', llcrnrlat=lat[0], urcrnrlat=lat[-1], \
    #              llcrnrlon=lon[0], urcrnrlon=lon[-1], ax=ax1)
   # 参数 "resolution" 用于控制地图面积边缘的精细程度,有'l'和'h'两种取值
    m = Basemap(lat_0=lat0, lon_0=lon0,projection='cyl',resolution='l')
    # 绘制等经纬度线 纬度每隔20度画一条线,且标注经纬度
    m.drawparallels(np.arange(-90., 91., 20.), labels=[1, 0, 0, 0], fontsize=10)
    m.drawmeridians(np.arange(-180., 181., 40.), labels=[0, 0, 0, 1], fontsize=10)
    m.drawcoastlines()# 绘制海岸线
    # m.drawcountries(linewidth=0.25)  # 绘制国界线
    # m.readshapefile('F:\E\data\grass_yield\shp\quhua\\省', 'states')  # 读取中国各省边界,并绘图

    lon, lat = np.meshgrid(lon, lat)
    xi, yi = m(lon, lat)
    # cmap是颜色,还可选‘jet'、‘spring'、‘winter'、'summer'、'autumn'
    cs = m.contourf(xi, yi, data[10],  cmap='summer')
    # pad指位置,
    cbar = m.colorbar(cs, location='bottom', pad="10%",format='%.1f')
    # cbar = m.colorbar(C, 'right', ticks=np.arange(-128, 128, 40), format='%.1f')
    font1 = {'family': 'DejaVu Sans', 'weight': 'normal', 'size': 16}
    plt.title('CSIF', font1)
    plt.show()

运行效果:

用Cartopy绘图

参考文献3

此前 Python 最常用的地图包是 Basemap,然而它将于 2020 年被弃用,官方推荐使用 Cartopy 包作为替代。Cartopy 是英国气象局开发的地图绘图包,实现了 Basemap 的大部分功能,还可以通过 Matplotlib 的 API 实现丰富的自定义效果。

安装Cartopy包

下载安装OSGeo4W4

参考文献:https://zhuanlan.zhihu.com/p/129351199 

参考文献:https://blog.csdn.net/weixin_39618339的plt画图像图例的位置怎么写代码_用basemap画气象图 

参考文献: https://zhajiman.github.io/ 

https://trac.osgeo.org/osgeo4w/

总结

到此这篇关于python读取nc数据并绘图的文章就介绍到这了,更多相关python读取nc数据绘图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯