文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python读取mnist数据集方法案例详解

2024-04-02 19:55

关注

mnist手写数字数据集在机器学习中非常常见,这里记录一下用python从本地读取mnist数据集的方法。

数据集格式介绍

这部分内容网络上很常见,这里还是简明介绍一下。网络上下载的mnist数据集包含4个文件:

在这里插入图片描述

前两个分别是测试集的image和label,包含10000个样本。后两个是训练集的,包含60000个样本。.gz表示这个一个压缩包,如果进行解压的话,会得到.ubyte格式的二进制文件。

在这里插入图片描述

上图是训练集的label和image数据的存储格式。两个文件最开始都有magic number和number of images/items两个数据,有用的是第二个,表示文件中存储的样本个数。另外要注意的是数据的位数,有32位整型和8位整型两种。

读取方法

.gz格式的文件读取

需要import gzip
读取训练集的代码如下:


def load_mnist_train(path, kind='train'): 
'‘'
path:数据集的路径
kind:值为train,代表读取训练集
‘'‘   
    labels_path = os.path.join(path,'%s-labels-idx1-ubyte.gz'% kind)
    images_path = os.path.join(path,'%s-images-idx3-ubyte.gz'% kind)
    #使用gzip打开文件
    with gzip.open(labels_path, 'rb') as lbpath:
	    #使用struct.unpack方法读取前两个数据,>代表高位在前,I代表32位整型。lbpath.read(8)表示一次从文件中读取8个字节
	    #这样读到的前两个数据分别是magic number和样本个数
        magic, n = struct.unpack('>II',lbpath.read(8))
        #使用np.fromstring读取剩下的数据,lbpath.read()表示读取所有的数据
        labels = np.fromstring(lbpath.read(),dtype=np.uint8)
    with gzip.open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))
        images = np.fromstring(imgpath.read(),dtype=np.uint8).reshape(len(labels), 784)
    return images, labels

读取测试集的代码类似。

非压缩文件的读取

如果在本地对四个文件解压缩之后,得到的就是.ubyte格式的文件,这时读取的代码有所变化。


def load_mnist_train(path, kind='train'): 
'‘'
path:数据集的路径
kind:值为train,代表读取训练集
‘'‘   
    labels_path = os.path.join(path,'%s-labels-idx1-ubyte'% kind)
    images_path = os.path.join(path,'%s-images-idx3-ubyte'% kind)
    #不再用gzip打开文件
    with open(labels_path, 'rb') as lbpath:
	    #使用struct.unpack方法读取前两个数据,>代表高位在前,I代表32位整型。lbpath.read(8)表示一次从文件中读取8个字节
	    #这样读到的前两个数据分别是magic number和样本个数
        magic, n = struct.unpack('>II',lbpath.read(8))
        #使用np.fromfile读取剩下的数据
        labels = np.fromfile(lbpath,dtype=np.uint8)
    with gzip.open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))
        images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)
    return images, labels

读取之后可以查看images和labels的长度,确认读取是否正确。

到此这篇关于python读取mnist数据集方法案例详解的文章就介绍到这了,更多相关python读取mnist数据集方法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯