文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python中图像灰度非线性变换的示例分析

2023-06-29 11:21

关注

这篇文章将为大家详细讲解有关Python中图像灰度非线性变换的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

一.图像灰度非线性变换

原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:

# -*- coding: utf-8 -*-# By:Eastmountimport cv2  import numpy as np  import matplotlib.pyplot as plt#读取原始图像img = cv2.imread('luo.png')#图像灰度转换grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#获取图像高度和宽度height = grayImage.shape[0]width = grayImage.shape[1]#创建一幅图像result = np.zeros((height, width), np.uint8)#图像灰度非线性变换:DB=DA×DA/255for i in range(height):    for j in range(width):        gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255        result[i,j] = np.uint8(gray)#显示图像cv2.imshow("Gray Image", grayImage)cv2.imshow("Result", result)#等待显示cv2.waitKey(0)cv2.destroyAllWindows()

图像灰度非线性变换的输出结果如图13-1所示:

Python中图像灰度非线性变换的示例分析

二.图像灰度对数变换

图像灰度的对数变换一般表示如公式(13-1)所示:

Python中图像灰度非线性变换的示例分析

其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如图13-2所示,它表示对数曲线下的灰度值变化情况,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

Python中图像灰度非线性变换的示例分析

由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。

对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。

在图13-3中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。

Python中图像灰度非线性变换的示例分析

下面的代码实现了图像灰度的对数变换。

# -*- coding: utf-8 -*-# By:Eastmountimport numpy as npimport matplotlib.pyplot as pltimport cv2#绘制曲线def log_plot(c):    x = np.arange(0, 256, 0.01)    y = c * np.log(1 + x)    plt.plot(x, y, 'r', linewidth=1)    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签    plt.title('对数变换函数')    plt.xlabel('x')    plt.ylabel('y')    plt.xlim(0, 255), plt.ylim(0, 255)    plt.show()#对数变换def log(c, img):    output = c * np.log(1.0 + img)    output = np.uint8(output + 0.5)    return output#读取原始图像img = cv2.imread('dark.png')#绘制对数变换曲线log_plot(42)#图像灰度对数变换output = log(42, img)#显示图像cv2.imshow('Input', img)cv2.imshow('Output', output)cv2.waitKey(0)cv2.destroyAllWindows()

图13-4表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。

Python中图像灰度非线性变换的示例分析

对应的对数函数曲线如图13-5所示,其中x表示原始图像的灰度值,y表示对数变换之后的目标灰度值。

Python中图像灰度非线性变换的示例分析

三.图像灰度伽玛变换

伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式(13-2)所示:

Python中图像灰度非线性变换的示例分析

当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。

当&gamma;<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。

当&gamma;=1时,该灰度变换是线性的,此时通过线性方式改变原图像。

Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。

# -*- coding: utf-8 -*-# By:Eastmountimport numpy as npimport matplotlib.pyplot as pltimport cv2#绘制曲线def gamma_plot(c, v):    x = np.arange(0, 256, 0.01)    y = c*x**v    plt.plot(x, y, 'r', linewidth=1)    plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签    plt.title('伽马变换函数')    plt.xlabel('x')    plt.ylabel('y')    plt.xlim([0, 255]), plt.ylim([0, 255])    plt.show()#伽玛变换def gamma(img, c, v):    lut = np.zeros(256, dtype=np.float32)    for i in range(256):        lut[i] = c * i ** v    output_img = cv2.LUT(img, lut) #像素灰度值的映射    output_img = np.uint8(output_img+0.5)      return output_img#读取原始图像img = cv2.imread('white.png')#绘制伽玛变换曲线gamma_plot(0.00000005, 4.0)#图像灰度伽玛变换output = gamma(img, 0.00000005, 4.0)#显示图像cv2.imshow('Imput', img)cv2.imshow('Output', output)cv2.waitKey(0)cv2.destroyAllWindows()

图13-6表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。

Python中图像灰度非线性变换的示例分析

对应的伽马变换曲线如图13-7所示,其中x表示原始图像的灰度值,y表示伽马变换之后的目标灰度值。

Python中图像灰度非线性变换的示例分析

关于“Python中图像灰度非线性变换的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯