本篇内容主要讲解“np.newaxis()函数如何使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“np.newaxis()函数如何使用”吧!
np.newaxis
np.newaxis 的功能是增加新的维度,但是要注意 np.newaxis 放的位置不同,产生的矩阵形状也不同。
通常按照如下规则:
np.newaxis 放在哪个位置,就会给哪个位置增加维度
x[:, np.newaxis] ,放在后面,会给列上增加维度
x[np.newaxis, :] ,放在前面,会给行上增加维度
用途: 通常用它将一维的数据转换成一个矩阵,这样就可以与其他矩阵进行相乘。
例1:这里的 x 是一维数据,其 shape 是 4,可以看到通过在列方向上增加新维度,变成了 4 x 1 的矩阵,也就是在 shape 的后面发生了变化。
x = np.array([1, 2, 3, 4])print(x.shape)x_add = x[:, np.newaxis]print(x_add.shape)print(x_add)>>>(4,)(4, 1)[[1] [2] [3] [4]]
例2:通过在行方向上增加新的维度,变成了 1 x 4 的矩阵,也就是在 shape 的前面发生了变化。
x = np.array([1, 2, 3, 4])print(x.shape)x_add = x[np.newaxis, :]print(x_add.shape)print(x_add)>>>(4,)(1, 4)[[1 2 3 4]]
例3:给矩阵增加一个维度。
x = np.array([[1, 2, 3, 4], [2, 3, 4, 5]])print(x.shape)x_add = x[:, np.newaxis]print(x_add)print(x_add.shape)>>>(2, 4)[[[1 2 3 4]] [[2 3 4 5]]](2, 1, 4)
到此,相信大家对“np.newaxis()函数如何使用”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!