文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

自学tensorflow——2.使用te

2023-01-31 00:33

关注

废话不多说,直接开始

1.首先,导入所需的模块:

import numpy as np
import os
import tensorflow as tf

关闭tensorflow输出的一大堆硬件信息

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

2.写一个函数generate_data(),用来生成我们所需要的数据,这里使用的线性函数是y = 0.1*x + 0.3,具体解释见注释

def generate_data():#随机生成测试数据
    num_points = 1000
    vector_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)#以函数y = 0.1x+0.3为基准生成点数据,加上一个随机值是为了防止生成的点都严格在一条直线上
        vector_set.append([x1, y1])
        x_data = [v[0] for v in vector_set]#就是vector_set里面的所有x1组成的列表
        y_data = [v[1] for v in vector_set]#同上
    return x_data, y_data

说一下上面8,9两行的操作,其实

x_data = [v[0] for v in vector_set]

for i in vector_set:
    x_data.append(i[0])

等价,只是这样写比较方便。

3.接下来就是我们的计算图的构建了

首先介绍一些东西:

tf.random_uniform(shape, a, b)#用来生成a~b范围内的均匀分布的随机数,其中shape是生成的张量的形状
tf.square(a)#计算a的平方
tf.reduce_mean()#(不指定axis的情况下)就是计算平均值
tf.train.GradientDescentOptimizer(0.5)#tf.train里面有许多优化方法,这里使用GradientDescentOptimizer()参数是学习率,范围0~1

博主也只是略知一二,具体可以去查手册或百度

代码如下,也是有注释的(注意,下面的*,+,-都是张量运算)

def train(x_data, y_data):
    w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name = 'w')#生成均匀分布的值,其中[1]可以换成(1, ),表示矩阵的形状
    b = tf.Variable(tf.zeros([1]), name = 'b')#b初始化为0
    y = w * x_data + b#根据随机生成的w, x_data, b计算y
    loss = tf.reduce_mean(tf.square(y - y_data), name = 'loss')#tf.square()平方,tf.reduce_mean(不指定axis的情况下)就是计算平均值,所以loss就是标准差
    optimizer = tf.train.GradientDescentOptimizer(0.5)#设置学习率为0.5
    train = optimizer.minimize(loss, name = 'train')#使用优化器通过损失函数调整神经网络权值

    with tf.Session() as sess:#开启任务,为了方便,起了别名sess
      init = tf.global_variables_initializer()#同上
      sess.run(init)#初始化全部变量

      print('w = ', sess.run(w), 'b = ', sess.run(b), 'loss = ', sess.run(loss))#这是随机生成的,开始训练前的w,b和损失
      for step in range(50):#一共训练50次
          sess.run(train)
          print('w = ', sess.run(w), 'b = ', sess.run(b), 'loss = ', sess.run(loss))#这是每一次训练后的w,b和损失

最后只要调用这两个函数就行了

if __name__ == "__main__":
    x_data, y_data = generate_data()
    train(x_data, y_data)

对了,二次方程,甚至多次方程也可以哦

那么今天就到这里。

See you next time!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯