文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python机器学习sklearn实现识别数字

2024-04-02 19:55

关注

简介

本文主要简述如何通过sklearn模块来进行预测和学习,最后再以图表这种更加直观的方式展现出来

数据集

学习数据

预测数据

数据处理

数据分离

因为我们打开我们的的学习数据集,最后一项是我们的真实数值,看过小唐上一篇的人都知道,老规矩先进行拆分,前面的特征放一块,后面的真实值放一块,同时由于数据没有列名,我们选择使用iloc[]来实现分离

def shuju(tr_path,ts_path,sep='\t'):
    train=pd.read_csv(tr_path,sep=sep)
    test=pd.read_csv(ts_path,sep=sep)
    #特征和结果分离
    train_features=train.iloc[:,:-1].values
    train_labels=train.iloc[:,-1].values
    test_features = test.iloc[:, :-1].values
    test_labels = test.iloc[:, -1].values
    return train_features,test_features,train_labels,test_labels

训练数据

我们在这里直接使用sklearn函数,通过选择模型,然后直接生成其识别规则

#训练数据
def train_tree(*data):
    x_train, x_test, y_train, y_test=data
    clf=DecisionTreeClassifier()
    clf.fit(x_train,y_train)
    print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test)))
    #返回学习模型
    return clf

数据可视化

为了让我们的观察更加直观,我们还可以使用matplotlib来进行观测

def plot_imafe(test,test_labels,preds):
    plt.ion()
    plt.show()
    for i in range(50):
        label,pred=test_labels[i],preds[i]
        title='实际值:{},predict{}'.format(label,pred)
        img=test[i].reshape(28,28)
        plt.imshow(img,cmap="binary")
        plt.title(title)
        plt.show()
    print('done')

结果

完整代码


import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

def shuju(tr_path,ts_path,sep='\t'):
    train=pd.read_csv(tr_path,sep=sep)
    test=pd.read_csv(ts_path,sep=sep)
    #特征和结果分离
    train_features=train.iloc[:,:-1].values
    train_labels=train.iloc[:,-1].values
    test_features = test.iloc[:, :-1].values
    test_labels = test.iloc[:, -1].values
    return train_features,test_features,train_labels,test_labels
#训练数据
def train_tree(*data):
    x_train, x_test, y_train, y_test=data
    clf=DecisionTreeClassifier()
    clf.fit(x_train,y_train)
    print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test)))
    #返回学习模型
    return clf

def plot_imafe(test,test_labels,preds):
    plt.ion()
    plt.show()
    for i in range(50):
        label,pred=test_labels[i],preds[i]
        title='实际值:{},predict{}'.format(label,pred)
        img=test[i].reshape(28,28)
        plt.imshow(img,cmap="binary")
        plt.title(title)
        plt.show()
    print('done')

train_features,test_features,train_labels,test_labels=shuju(r"C:\Users\twy\PycharmProjects\1\train_images.csv",r"C:\Users\twy\PycharmProjects\1\test_images.csv")
clf=train_tree(train_features,test_features,train_labels,test_labels)
preds=clf.predict(test_features)
plot_imafe(test_features,test_labels,preds)

到此这篇关于python机器学习sklearn实现识别数字的文章就介绍到这了,更多相关python sklearn识别数字内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯