文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

OpenCV 直方图均衡化的实现原理解析

2024-04-02 19:55

关注

直方图均衡化介绍

图像的直方图是什么?

图像直方图,是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图。直方图反映了图像灰度的分布情况。是图像的统计学特征。

简单来说:直方图是图像中像素强度分布的图形表达方式,它统计了每一个强度值所具有的像素个数。

例如下面这张图片,左图为灰度图,右图统计了这张图的所有像素值(0~255)对应的像素个数

在这里插入图片描述

更形象解释

更形象的来说,将下面像素格子对等为如上图的图像

假设有该图像数据8x8,像素值范围0~14共15个灰度等级,统计得到各个等级出现次数及直方图如下图所示:

在这里插入图片描述

则对上面抽象出来的图像(像素格子)进行像素与出现次数的统计得到下图左侧的表格,做出频率图如右图所示:

在这里插入图片描述

什么是直方图均衡化?

是一种提高图像对比度的方法,拉伸图像灰度值范围。

简单来说, 以上面狗狗的的直方图为例, 你可以看到像素主要集中在中间的一些强度值上。直方图均衡化要做的就是 拉伸 这个范围。就是下面蓝框框出来的范围就是像素主要几种区间。

在这里插入图片描述

见下图:绿圈 圈出了 像素分布率较低像素值,对其应用均衡化后(将中间蓝框像素分布较高的区间拉伸), 得到了中间图所示的直方图。均衡化的图像见下面右图.

在这里插入图片描述

直方图均衡化是如何实现的?

通过remap我们知道可以将图像灰度分布从一个分布映射到另外一个分布,然后在得到映射后的像素值即可。

映射关系如下:

在这里插入图片描述

其中源直方图 H(i), 累积分布 H’(i)函数,equalized()为重映射后的图像

直方图均衡化的作用

因为直方图均衡化处理之后,原来比较少像素的灰度会被分配到别的灰度去,像素相对集中, 处理后灰度范围变大,对比度变大,清晰度变大,所以能有效增强图像。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

总的来说,直方图均衡化是用来增强对比度的

直方图均衡化步骤

  1. 加载源图像
  2. 转为灰度图
  3. EqualizeHist 对直方图均衡化
  4. 显示均衡化后图像.

相关API

equalizeHist

cv::equalizeHist(
	InputArray src,	// 输入图像,必须是8-bit的单通道图像
	OutputArray dst	// 输出结果
)

代码示例

灰度图均值化

在这里插入图片描述

#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h> 

using namespace cv;
int main(int argc, char** argv) 
{
	Mat src, dst;
	src = imread("./test2.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, src, CV_BGR2GRAY);
	equalizeHist(src, dst);
	char INPUT_T[] = "input image";
	char OUTPUT_T[] = "result image";
	namedWindow(INPUT_T, CV_WINDOW_AUTOSIZE);
	namedWindow(OUTPUT_T, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_T, src);
	imshow(OUTPUT_T, dst);
	waitKey(0);
	return 0;
}

彩色图均值化

在这里插入图片描述

#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h> 

using namespace cv;
using namespace std;
int main(int argc, char*argv)
{
	Mat src, dst, dst1;
	src = imread("./test2.jpg");
	if (!src.data)
	{
		printf("could not load image...\n");
		return -1;
	}
	char input[] = "input image";
	char output[] = "histogram iamge";
	namedWindow(input, CV_WINDOW_AUTOSIZE);
	namedWindow(output, CV_WINDOW_AUTOSIZE);
	imshow(input, src);
	// 分割通道
	vector<Mat>channels;
	split(src, channels);
	Mat blue, green, red;
	blue = channels.at(0);
	green = channels.at(1);
	red = channels.at(2);
	// 分别对BGR通道做直方图均衡化
	equalizeHist(blue, blue);
	equalizeHist(green, green);
	equalizeHist(red, red);
	// 合并通道
	merge(channels, dst);
	imshow(output, dst);
	waitKey(0);
	return 0;
}

到此这篇关于OpenCV 直方图均衡化的文章就介绍到这了,更多相关OpenCV 直方图均衡化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯