文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

详解OpenCV自适应直方图均衡化的应用

2024-04-02 19:55

关注

介绍

在《直方图均衡化详解》中,我们已经了解的直方图均衡化的基本概念,并且可以使用 cv2.equalizeHist() 函数执行直方图均衡。

在本节中,将介绍如何应用对比度受限的自适应直方图均衡化 ( Contrast Limited Adaptive Histogram Equalization, CLAHE ) 来均衡图像,CLAHE 是自适应直方图均衡化( Adaptive Histogram Equalization, AHE )的一种变体,区别在于其对比度的增大是受限的。图像相对均匀区域中的噪声被 AHE 过度放大,而 CLAHE 通过限制对比度增大来解决这个问题。该算法通过创建原始图像的多个直方图,并使用这些直方图来重新分配图像的亮度,用于提高图像的对比度。

主要代码

接下来,将 CLAHE 应用于灰度和彩色图像。应用 CLAHE 时,有两个重要参数,第一个是 clipLimit,它设置对比度限制的阈值,默认值为 40;第二个是 tileGridSize ,它设置行和列中的 tiles 数量。应用 CLAHE 时,图像被分成称为 tiles (默认为 8 x 8 )的小块以执行其计算。 将 CLAHE 应用于灰度图像,需要使用以下代码:

# 加载图像
image = cv2.imread('example.png')
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 灰度图像应用 CLAHE
clahe = cv2.createCLAHE(clipLimit=2.0)
gray_image_clahe = clahe.apply(gray_image)
# 使用不同 clipLimit 值
clahe.setClipLimit(5.0)
gray_image_clahe_2 = clahe.apply(gray_image)
clahe.setClipLimit(10.0)
gray_image_clahe_3 = clahe.apply(gray_image)
clahe.setClipLimit(20.0)
gray_image_clahe_4 = clahe.apply(gray_image)

然后,我们将 CLAHE 应用于彩色图像,类似于彩色图像对比度均衡的方法,创建四个函数以仅在不同颜色空间的亮度通道上使用 CLAHE 来均衡化彩色图像:

def equalize_clahe_color_hsv(img):
    cla = cv2.createCLAHE(clipLimit=4.0)
    H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
    eq_V = cla.apply(V)
    eq_image = cv2.cvtColor(cv2.merge([H, S, eq_V]), cv2.COLOR_HSV2BGR)
    return eq_image

def equalize_clahe_color_lab(img):
    cla = cv2.createCLAHE(clipLimit=4.0)
    L, a, b = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2Lab))
    eq_L = cla.apply(L)
    eq_image = cv2.cvtColor(cv2.merge([eq_L, a, b]), cv2.COLOR_Lab2BGR)
    return eq_image

def equalize_clahe_color_yuv(img):
    cla = cv2.createCLAHE(clipLimit=4.0)
    Y, U, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2YUV))
    eq_Y = cla.apply(Y)
    eq_image = cv2.cvtColor(cv2.merge([eq_Y, U, V]), cv2.COLOR_YUV2BGR)
    return eq_image

def equalize_clahe_color(img):
    cla = cv2.createCLAHE(clipLimit=4.0)
    channels = cv2.split(img)
    eq_channels = []
    for ch in channels:
        eq_channels.append(cla.apply(ch))
    eq_image = cv2.merge(eq_channels)
    return eq_image
# 彩色图像应用 CLAHE
image_clahe_color = equalize_clahe_color(image)
image_clahe_color_lab = equalize_clahe_color_lab(image)
image_clahe_color_hsv = equalize_clahe_color_hsv(image)
image_clahe_color_yuv = equalize_clahe_color_yuv(image)

# 可视化
show_img_with_matplotlib(cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR), "gray", 1)
show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=2.0", 2)
show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_2, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=5.0", 3)
# 其他图像的可视化方法类似,不再赘述
# ...

将所有这些函数应用于测试图像后比较结果,如下图所示:

在上图中,我们可以看到改变 clipLimit 参数在测试图像上应用 CLAHE 后的不同效果,同时也可以看到在不同颜色空间( LAB、HSV 和 YUV )的亮度通道上应用 CLAHE 后的不同结果。其中,可以看到在 BGR 图像的三个通道上应用 CLAHE 与仅在不同颜色空间的亮度通道上使用 CLAHE 的不同效果。

比较 CLAHE 和直方图均衡化

为了更好地展示 CLAHE 的效果,接下来对比 CLAHE 和直方图均衡化 (cv2.equalizeHist()) 在同一图像上的效果,同时可视化生成的图像和生成的直方图。

image = cv2.imread('example.png')
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

hist = cv2.calcHist([gray_image], [0], None, [256], [0, 256])
# 直方图均衡化
gray_image_eq = cv2.equalizeHist(gray_image)
# 计算直方图
hist_eq = cv2.calcHist([gray_image_eq], [0], None, [256], [0, 256])
# 创建 clahe:
clahe = cv2.createCLAHE(clipLimit=4.0)
# 在灰度图像上应用 clahe
gray_image_clahe = clahe.apply(gray_image)
# 计算直方图
hist_clahe = cv2.calcHist([gray_image_clahe], [0], None, [256], [0, 256])

可视化的结果如下图所示:

通过以上对比,可以肯定地说,在许多情况下,CLAHE 比应用直方图均衡化有更好的结果和性能。

到此这篇关于详解OpenCV自适应直方图均衡化的应用的文章就介绍到这了,更多相关OpenCV自适应直方图均衡化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯