文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

CLIP模型

2023-09-24 20:52

关注
什么是CLIP

Contrastive Language-Image Pre-Training—CLIP
利用文本的监督信号训练一个迁移能力强的视觉模型
在这里插入图片描述

与前人工作对比:

CLIP的成果:

监督训练和zero-shot

在监督学习中,计算机通过示例学习。它从过去的数据中学习,并将学习的结果应用到当前的数据中,以预测未来的事件。在这种情况下,输入和期望的输出数据都有助于预测未来事件。
无监督学习是训练机器使用既未分类也未标记的数据的方法。这意味着无法提供训练数据,机器只能自行学习。机器必须能够对数据进行分类,而无需事先提供任何有关数据的信息。
简而言之:

什么是zero-shot(零样本学习):

简单的zero-shot的实例:
在这里插入图片描述

首先,我们可以将其视为一个类似于自然语言处理的任务,它使用词嵌入(将词汇表中的词或短语映射到实数向量,要求具有相似含义的词将具有相似的词嵌入)。那么对于上面的例子,零样本学习是下面这样来处理的,

CLIP模型的基本架构

模型训练:
在这里插入图片描述

# 分别提取图像特征和文本特征I_f = image_encoder(I) #[n, d_i]T_f = text_encoder(T) #[n, d_t]# 对两个特征进行线性投射,得到相同维度的特征,并进行l2归一化I_e = l2_normalize(np.dot(I_f, W_i), axis=1)T_e = l2_normalize(np.dot(T_f, W_t), axis=1)# 计算缩放的余弦相似度:[n, n]logits = np.dot(I_e, T_e.T) * np.exp(t)# 对称的对比学习损失:等价于N个类别的cross_entropy_losslabels = np.arange(n) # 对角线元素的labelsloss_i = cross_entropy_loss(logits, labels, axis=0)loss_t = cross_entropy_loss(logits, labels, axis=1)loss = (loss_i + loss_t)/2

模型预测:
在这里插入图片描述

合理的提示:

CLIP模型的展示

来源地址:https://blog.csdn.net/NEUQ_snowy/article/details/127468987

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯