文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Matlab控制电脑摄像实现实时人脸检测和识别详解

2024-04-02 19:55

关注

一、理论基础

人脸识别过程主要由四个阶段组成:人脸检测、图像预处理、面部特征提取和特征识别。首先系统从视频或者相机中捕获图像,检测并分割出其中的人脸区域;接下来通过归一化、对齐、滤波等方法改善图像的质量,这里的质量主要由最终的人脸识别率决定;特征提取(降维)环节尤为重要,其初衷是减少数据量从而减轻计算负担,但良好的特征选取可以降低噪音和不相关数据在识别中的贡献度,从而提高识别精度;特征识别阶段需要根据提取的特征训练一个分类器,对于给定的测试样本,根据训练器对其进行分类。

当定位好人脸的时候,我们进行识别,识别的主要原理如下:

GRNN广义回归神经网络的理论基础是非线性核回归分析,非独立变量y相对于独立变量x的回归分析实际上是计算具有最大概率值的y。设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

对于未知的概率密度函数f (x, y),可由x和y的观测样本经非参数估计得:

GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结构如图2-3所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。 

GRNN广义回归神经网络进行映射学习达到了很好的效果.这些流形的方法都建立在一个假设上:同一个人不同姿态的图像是高维空间中的一个低维流形.基于这个假设,不同人在姿态变化下可以获得较好的识别效果。

在matlab中,通过如下的驱动程序控制笔记本电脑的摄像头:

%Set up video object. Note: to change to a different camera (or camera setup) change the following line:
vid = videoinput('winvideo',1,'YUY2_640x480');
%Set the video object to always return rgb images:
set(vid, 'ReturnedColorSpace', 'rgb');
triggerconfig(vid,'manual');
start(vid)
%Initialize frame Frm and fps variable
Frm     = 0;
fps     = 0;
%Set the total runtime in seconds 
runtime = 100;
h       = figure(1);
tic;
timeTracker = toc;

通过程序vid = videoinput('winvideo',1,'YUY2_640x480');完成摄像头图像的采集。

二、核心程序

clc;
clear;
close all;
warning off;
addpath 'func\'
addpath 'facebase\'
 
 
delete(imaqfind);
%Set up video object. Note: to change to a different camera (or camera setup) change the following line:
vid = videoinput('winvideo',1,'YUY2_640x480');
%Set the video object to always return rgb images:
set(vid, 'ReturnedColorSpace', 'rgb');
triggerconfig(vid,'manual');
start(vid)
%Initialize frame Frm and fps variable
Frm     = 0;
fps     = 0;
%Set the total runtime in seconds 
runtime = 100;
h       = figure(1);
tic;
timeTracker = toc;
 
 
load grnns.mat
while toc < runtime 
      toc
      Frm = Frm + 1;
      %获得摄像头图像
      I   = getsnapshot(vid);
 
 
      %人脸跟踪
      [segment,f,R0,R1] = func_face_track(I);
      %获得人脸区域
      figure(1);
      subplot(221);
      imshow(uint8(I));
      title('摄像头视频获取');
      subplot(222);
      imshow(f);
      subplot(223);
      imshow(R1);
      title('脸部定位');
      
      %人脸识别(测试前需要加入自己所要测试的人脸的相关库。比如你要测试你自己的脸,那么需要加入你的脸道库中)
       
      R0re    = imresize(R0,[220,160]);
      Ttest   = func_yuchuli(R0re);%读入数字
      wordsss = sim(net,Ttest');
      [V,I]   = max(wordsss);
    
      %显示识别结论
      Icheck  = imread(['facebase\',num2str(I-1),'.jpg']);
      
      subplot(224);
      imshow(Icheck);
      title('识别结论');
      pause(0.5);
end
stop(vid)
 
 
 
clc;
clear;
close all;
warning off;
addpath 'func\'
addpath 'facebase\'
I = imread('1.jpg');
 
%%
%人脸跟踪
[segment,f,R0,R1] = func_face_track(I);
%获得人脸区域
figure
subplot(221);
imshow(I);
subplot(222);
imshow(f);
subplot(223);
imshow(R1);
title('脸部定位');
 
%%
%人脸识别(测试前需要加入自己所要测试的人脸的相关库。比如你要测试你自己的脸,那么需要加入你的脸道库中)
%人脸库的离线训练
R0re    = imresize(R0,[220,160]);
Ttest   = func_yuchuli(R0re);%读入数字
 
load grnns.mat
wordsss = sim(net,Ttest');
[V,I]   = max(wordsss);
%显示识别结论
Icheck  = imread(['facebase\',num2str(I-1),'.jpg']);
subplot(224);
imshow(Icheck);
title('识别结论');

三、仿真测试结果

由此可以看出,当选择出学习样本之后,GRNN网络的结构与权值都是完全确定的,因而训练GRNN网络要比训练BP网络和RBF网络便捷得多。

到此这篇关于Matlab控制电脑摄像实现实时人脸检测和识别详解的文章就介绍到这了,更多相关Matlab人脸检测识别内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯