文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

基于Python实现计算纳什均衡的示例详解

2023-02-06 12:03

关注

纳什均衡是一种博弈论中的概念,它描述了一种平衡状态,其中每个参与者都不能通过独立改变其决策来提高自己的利益。

在 Python 中,可以使用一些第三方库,例如 Gambit 或 Nashpy,来计算纳什均衡。

Nashpy 库计算两个参与者的纳什均衡

注意安装 nashpy 库。

import nashpy as nash
import numpy as np

A = np.array([[1, -1], [-1, 1]])
game = nash.Game(A)
equilibrium = game.vertex_enumeration()
print("纳什均衡是: ", next(equilibrium))

在上述代码中,先导入了 nashpy 库,并使用其中的 Game() 函数创建一个游戏。

然后,使用 vertex_enumeration() 方法找到纳什均衡,并使用 next() 函数从生成器中提取第一个均衡。

手动计算纳什均衡

下面是使用原生 Python 手动计算纳什均衡的代码示例:

import numpy as np
from scipy.optimize import linprog


def nash_equilibrium(payoff_matrix_a, payoff_matrix_b):
    """
    计算二人非合作博弈的纳什均衡。
    """
    num_actions_a = payoff_matrix_a.shape[1]
    num_actions_b = payoff_matrix_b.shape[1]

    # 定义优化问题
    c = -np.ones(num_actions_a + num_actions_b)
    A = np.zeros((num_actions_b, num_actions_a + num_actions_b))
    for j in range(num_actions_b):
        A[j, :num_actions_a] = -payoff_matrix_b[:, j]
        A[j, num_actions_a:] = np.ones(num_actions_b)

    b = np.zeros(num_actions_b)
    bounds = [(0, None) for _ in range(num_actions_a + num_actions_b)]

    # 解决优化问题
    res = linprog(c, A_ub=A, b_ub=b, bounds=bounds, method='simplex')

    # 提取混合策略
    mixed_strategy_a = res.x[:num_actions_a]
    mixed_strategy_b = res.x[num_actions_a:]

    return mixed_strategy_a, mixed_strategy_b



payoff_matrix_a = np.array([[1, 5], [0, 5]])
payoff_matrix_b = np.array([[3, 7], [2, 3]])
mixed_strategy_a, mixed_strategy_b = nash_equilibrium(payoff_matrix_a, payoff_matrix_b)

print("混合策略 A:", mixed_strategy_a)
print("混合策略 B:", mixed_strategy_b)

该代码仅适用于 2 名玩家的博弈,如果您需要计算多名玩家的博弈,则需要进行一些修改。

代码运行结果如下。

上述代码使用 scipy 库的 linprog() 函数来解决博弈矩阵。它将约束条件和目标函数作为输入,返回纳什均衡策略。

使用了 PuLP 库计算纳什均衡

下面是简单的代码实现:

from pulp import *

# 创建一个线性规划模型
prob = LpProblem("纳什均衡", LpMaximize)

# 创建玩家1的策略变量
p1 = LpVariable("p1", 0, 1)

# 创建玩家2的策略变量
p2 = LpVariable("p2", 0, 1)

# 设置目标函数
prob += 5 * p1 + 4 * p2, "Total Utility"

# 设置约束条件
prob += p1 + 2 * p2 <= 1, "玩家 1 约束条件"
prob += 3 * p1 + 2 * p2 <= 2, "玩家 2 约束条件"

# 解决问题
prob.solve()

# 输出结果
print("玩家1策略: ", value(p1))
print("玩家2策略: ", value(p2))

以上方法是通过线性规划计算纳什均衡的方法,学习的时候可以自行设置约束条件。

总结

在 Python 中,纳什均衡可以通过解方程组、对均衡点的搜索等方式来计算。

常用的方法是使用 scipy 库中的 linprog() 函数,注意提前安装 scipy 库。

如果不使用第三方库,则可以通过编写算法来计算纳什均衡,例如使用解方程组和对均衡点的搜索。但这需要较复杂的数学知识和编程技巧,也就是要数学功底扎实。

到此这篇关于基于Python实现计算纳什均衡的示例详解的文章就介绍到这了,更多相关Python计算纳什均衡内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯