这篇“Python怎么用CNN实现对时序数据进行分类”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python怎么用CNN实现对时序数据进行分类”文章吧。
一、数据集介绍
数据集利用的是CPSC2020数据集。
训练数据包括从心律失常患者收集的10个单导联心电图记录,每个记录持续约24小时。
下载完成后的TrainingSet数据集包括两个文件夹,分别是data和ref。data和ref文件夹内分别有10个mat文件。
data文件夹存储数据文件,每个文件以mat格式存储,n ∗ 1 n*1n∗1数组表示;
ref文件夹为标签文件夹,每个文件以mat文件存储,结构体存储,包括S_ref,V_ref两个n*1数组,分别存储对应标签(S,V)的位置;
采样率为 400。
S:室上早搏(SPB);
V:心室早搏(PVC);
二、数据预处理
2.1 获取原始数据
查看一下前1000个心电图数据:
datafile = 'E:/Wendy/Desktop/TrainingSet/data/A04.mat'# 采样率400data = scio.loadmat(datafile)#rint(data) # dictsig = data['ecg']# (x,1)#print(sig)sig = np.reshape(sig,(-1)) # (x,)转换为一维向量print(sig)sigPlot = sig[1:5*200]# # 获取前1000个信号fig = plt.figure(figsize=(20, 10),dpi=400)plt.plot(sigPlot)plt.show()
运行结果:
2.2 获取原始标签
将标签数据转化为一维向量
datafile = 'E:/Wendy/Desktop/TrainingSet/ref/R04.mat'# 采样率400data = scio.loadmat(datafile)#print(data)label = data['ref'][0][0]S_ref = label[0];S_ref = np.reshape(S_ref,(-1)) # 转换为一维向量V_ref = label[1];V_ref = np.reshape(V_ref,(-1)) # 转换为一维向量
2.3 数据分割
数据分割为5s一个片段
思路:房早室早心拍和前后两个心拍均有关系,按照平均心率72计算,平均每个心拍的时间为60/72,因此5个心拍的时间为60/725=4.1667 4.1667s不好计算,故选择5s 5 ( 秒 ) s a m p r = 5 ∗ 400 = 2000 个 s a m p l e 5(秒)sampr = 5*400=2000个sample5(秒)sampr=5∗400=2000个sample
定义标签:0:其他;1:V_ref; 2:S_ref;
a = len(sig)Fs = 400 # 采样率为400segLen = 5*Fs # 2000num = int(a/segLen)print(num)
运行结果:
17650
其中Fs为采样率,segLen为片段长度,num为片段数量。
2.4 整合数据和标签
接下来需要整合数据和标签:
all_data=[]all_label = [];i=1while i<num+1: all_data.append(np.array(sig[(i-1)*segLen:i*segLen])) # 标签 if set(S_ref) & set(range((i-1)*segLen,i*segLen)): all_label.append(2) elif set(V_ref) & set(range((i-1)*segLen,i*segLen)): all_label.append(1) else: all_label.append(0) i=i+1type(all_data)# list类型type(all_label)# list类型print((np.array(all_data)).shape) # 17650为数据长度,2000为数据个数print((np.array(all_label)).shape)#print(all_data)
运行结果:
(17650, 2000)
(17650,)
17650为数据长度,2000为数据个数。
2.5 保存
将数据保存为字典类型:
import pickleres = {'data':all_data, 'label':all_label} # 字典类型dictwith open('./cpsc2020.pkl', 'wb') as fout: # #将结果保存为cpsc2020.pkl pickle.dump(res, fout)
三、数据训练
3.1 读取数据并进行处理
将数据归一化并进行标签编码,划分训练集和测试集,训练集为90%,测试集为10%,打乱数据并将其扩展为二维:
import numpy as npimport pandas as pdimport scipy.iofrom matplotlib import pyplot as pltimport picklefrom sklearn.model_selection import train_test_splitfrom collections import Counterfrom tqdm import tqdmdef read_data_physionet(): """ only N V, S """ # read pkl with open('./cpsc2020.pkl', 'rb') as fin: res = pickle.load(fin) # 加载数据集 ## 数据归一化 all_data = res['data'] for i in range(len(all_data)): tmp_data = all_data[i] tmp_std = np.std(tmp_data) # 获取数据标准差 tmp_mean = np.mean(tmp_data) # 获取数据均值 if(tmp_std==0): # i=1239-1271均为0 tmp_std = 1 all_data[i] = (tmp_data - tmp_mean) / tmp_std # 归一化 all_data = [] ## 标签编码 all_label = [] for i in range(len(res['label'])): if res['label'][i] == 1: all_label.append(1) all_data.append(res['data'][i]) elif res['label'][i] == 2: all_label.append(2) all_data.append(res['data'][i]) else: all_label.append(0) all_data.append(res['data'][i]) all_label = np.array(all_label) all_data = np.array(all_data) # 划分训练集和测试集,训练集90%,测试集10% X_train, X_test, Y_train, Y_test = train_test_split(all_data, all_label, test_size=0.1, random_state=15) print('训练集和测试集中 其他类别(0);室早(1);房早(2)的数量: ') print(Counter(Y_train), Counter(Y_test)) # 打乱训练集 shuffle_pid = np.random.permutation(Y_train.shape[0]) X_train = X_train[shuffle_pid] Y_train = Y_train[shuffle_pid] # 扩展为二维(x,1) X_train = np.expand_dims(X_train, 1) X_test = np.expand_dims(X_test, 1) return X_train, X_test, Y_train, Y_testX_train, X_test, Y_train, Y_test = read_data_physionet()
运行结果:
训练集和测试集中 其他类别(0);室早(1);房早(2)的数量:
Counter({1: 8741, 0: 4605, 2: 2539}) Counter({1: 1012, 0: 478, 2: 275})
3.2 构建数据结构
自行构建数据集:
# 构建数据结构 MyDataset# 单条数据信号的形状为:1*2000import numpy as npfrom collections import Counterfrom tqdm import tqdmfrom matplotlib import pyplot as pltfrom sklearn.metrics import classification_report import torchimport torch.nn as nnimport torch.optim as optimimport torch.nn.functional as Ffrom torch.utils.data import Dataset, DataLoaderclass MyDataset(Dataset): def __init__(self, data, label): self.data = data self.label = label #把numpy转换为Tensor def __getitem__(self, index): return (torch.tensor(self.data[index], dtype=torch.float), torch.tensor(self.label[index], dtype=torch.long)) def __len__(self): return len(self.data)
3.3 搭建神经网络
搭建CNN网络结构:
# 搭建神经网络class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( # input shape (1, 1, 2000) nn.Conv1d( in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2, ), # output shape (16, 1, 2000) nn.Dropout(0.2), nn.ReLU(), nn.MaxPool1d(kernel_size=5), # choose max value in 1x5 area, output shape (16, 1, 400)2000/5 ) self.conv2 = nn.Sequential( # input shape (16, 1, 400) nn.Conv1d(16, 32, 5, 1, 2), # output shape (32, 1, 400) nn.Dropout(0.2), nn.ReLU(), nn.MaxPool1d(kernel_size=5), # output shape (32, 1, 400/5=80) ) self.out = nn.Linear(32 * 80, 3) # fully connected layer, output 3 classes def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.out(x) #output.Softmax() return output, xcnn = CNN()print(cnn)
运行结果:
CNN(
(conv1): Sequential(
(0): Conv1d(1, 16, kernel_size=(5,), stride=(1,), padding=(2,))
(1): Dropout(p=0.2, inplace=False)
(2): ReLU()
(3): MaxPool1d(kernel_size=5, stride=5, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(0): Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=(2,))
(1): Dropout(p=0.2, inplace=False)
(2): ReLU()
(3): MaxPool1d(kernel_size=5, stride=5, padding=0, dilation=1, ceil_mode=False)
)
(out): Linear(in_features=2560, out_features=3, bias=True)
)
3.4 开始训练
优化器利用的是Adam优化器,损失函数使用crossEntropy函数。
代码略
50个epoch的运行效果如下:
以上就是关于“Python怎么用CNN实现对时序数据进行分类”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注编程网行业资讯频道。