文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PythonOpenCV实现基于模板的图像拼接

2024-04-02 19:55

关注

之前基于特征点的图像拼接如果是多张图,每次计算变换矩阵,都有误差,最后可以图像拼完就变形很大,基于模板的方法可以很好的解决这一问题。

import cv2
import numpy as np
 
 
 
def matchStitch(imageLeft, imageRight):
 
    ImageLeft_gray = cv2.cvtColor(imageLeft,cv2.COLOR_BGR2GRAY)
    ImageRight_gray = cv2.cvtColor(imageRight,cv2.COLOR_BGR2GRAY)
 
    # cv2.imshow("gray", ImageLeft_gray)
    # cv2.waitKey()
 
    # 获取图像长宽
    height_Left, width_left = ImageLeft_gray.shape[:2]
    height_Right, width_Right = ImageRight_gray.shape[:2]
 
    # 模板区域
    left_width_begin = int(3*width_left/4)
    left_height_begin = 0
    template_left = imageLeft[left_height_begin:int(height_Left/2), left_width_begin: width_left]
    drawLeftRect = imageLeft.copy()
    cv2.rectangle(drawLeftRect, (left_width_begin, left_height_begin), (width_left, int(height_Left/2) ), (0, 0, 255), 1)
 
    cv2.imshow("template_left", drawLeftRect)
    # cv2.waitKey()
    # 右边匹配区域
    match_right = imageRight[0:height_Right, 0: int(2*width_Right/3)]
    # cv2.imshow("match_right", match_right)
    # cv2.waitKey()
 
    # 执行模板匹配,采用的匹配方式cv2.TM_CCOEFF_NORMED
    matchResult = cv2.matchTemplate(match_right, template_left, cv2.TM_CCOEFF_NORMED)
    # 归一化处理
    cv2.normalize( matchResult, matchResult, 0, 1, cv2.NORM_MINMAX, -1 )
    # 寻找矩阵(一维数组当做向量,用Mat定义)中的最大值和最小值的匹配结果及其位置
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matchResult)
 
 
    # 设置最终图片大小
    dstStitch = np.zeros((height_Left, width_Right + left_width_begin - max_loc[0] , 3), imageLeft.dtype)
    # imageLeft.dtype
    # print(imageLeft.dtype)
    height_dst, width_dst = dstStitch.shape[:2]
    # copy left image
    dstStitch[0:height_Left, 0:width_left] = imageLeft.copy()
    # cv2.imshow("src", dstStitch)
 
    # 匹配右图的高要能和目标区域一样
    matchRight_H = height_Right - max_loc[1] + left_height_begin
    dst_y_start = 0
 
    if height_dst == matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
    elif height_dst < matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right - 1, max_loc[0]:width_Right]
    else:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
        dst_y_start = height_dst - matchRight_H
 
    # copy right image
    # matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
 
    drawRightRect = imageRight.copy()
    h, w = template_left.shape[:2]
    cv2.rectangle(drawRightRect, (max_loc[0],max_loc[1]), (max_loc[0] + w, max_loc[1] + h ), (0, 0, 255), 1)
    #
    cv2.imshow("drawRightRect", drawRightRect)
    # cv2.imshow("matchRight", matchRight)
 
    # print("height_Right   " + str(height_Right - max_loc[1] + left_height_begin))
    # print("matchRight" + str(matchRight.shape))
 
 
    height_mr, width_mr = matchRight.shape[:2]
    # print("dstStitch" + str(dstStitch.shape))
    dstStitch[dst_y_start:height_dst, left_width_begin:width_mr + left_width_begin] = matchRight.copy()
 
    # # 图像融合处理相图相交的地方 效果不好
    # for i in range(0, height_dst):
    #     # if i + winHeight > height:
    #     #     i_heiht = True
    #     for j in range(0, width_dst):
    #         if j == left_width_begin:
    #
    #             j += 1
    #             (b1, g1, r1) = dstStitch[i, j]
    #             j -= 1
    #
    #             dstStitch[i, j] = (b1, g1, r1)
 
 
    # cv2.imwrite("fineFlower04.jpg", dstStitch)
 
    cv2.imshow("dstStitch", dstStitch)
    cv2.waitKey()
 
 
 
 
 
if __name__ == "__main__":
 
    # imageLeft = cv2.imread("Images/Scan/2.jpg")
    # imageRight = cv2.imread("Images/Scan/3.jpg")
 
    imageLeft = cv2.imread("Images/Scan/flower05.jpg")
    imageRight = cv2.imread("Images/Scan/flower06.jpg")
    if imageLeft is None or imageRight is None:
        print("NOTICE: No images")
    else:
        # cv2.imshow("image", imageLeft)
        # cv2.waitKey()
        matchStitch(imageLeft, imageRight)

计算时需要注意的是模板区域一定要在拼接的左右两张图中都有,如果疏忽导致左图中模板较大,而右较中选的区域没有完整的模型就接错了。

# 右边匹配区域
match_right = imageRight[0:height_Right, 0: int(width_Right/2)]

右边先一半,一部分模板的不在里面了,就会拼的效果不好

边缘的区域还有改进的地方,后面有空再写。

到此这篇关于Python OpenCV实现基于模板的图像拼接的文章就介绍到这了,更多相关Python OpenCV图像拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯