文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++怎么判断四个点是否构成正方形

2023-06-14 08:01

关注

这篇文章将为大家详细讲解有关C++怎么判断四个点是否构成正方形,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

判断方法分为两步:

判断四条边是否相等;

判断是否有一个角为直角;

求解两点之前距离的函数:

double Distance(int x1,int y1,int x2,int y2){  return sqrt(pow((x1-x2),2)+pow((y1-y2),2));}

判断三点连续构成的角是否为直角,第一个点参数为顶点:

bool IsRightAngle(int x1,int y1,int x2,int y2,int x3,int y3){  if((x2-x1)*(x3-x1)+(y2-y1)*(y3-y1)==0)    return true;  return false;}

完整的程序:

#include <iostream>#include <math.h>using namespace std;//直接调用IsSquare函数,输入为四个点的坐标,输出为true or false;//求两点间的距离double Distance(int x1,int y1,int x2,int y2){  return sqrt(pow((x1-x2),2)+pow((y1-y2),2));}//判断三个点是否构成直角,第一个参数点是顶点bool IsRightAngle(int x1,int y1,int x2,int y2,int x3,int y3){  if((x2-x1)*(x3-x1)+(y2-y1)*(y3-y1)==0)    return true;  return false;}bool IsSquare(int x1,int y1,int x2,int y2,int x3,int y3,int x4,int y4){  if(x1==x2&&x2==x3)    return false;  double s12=Distance(x1,y1,x2,y2);  double s13=Distance(x1,y1,x3,y3);  double s14=Distance(x1,y1,x4,y4);  double s23=Distance(x2,y2,x3,y3);  double s24=Distance(x2,y2,x4,y4);  double s34=Distance(x3,y3,x4,y4);  if(s12==s13&&s24==s34&&s12==s24){    if(IsRightAngle(x1,y1,x2,y2,x3,y3)) return true;    else return false;  }  if(s12==s14&&s23==s34&&s12==s23){    if(IsRightAngle(x1,y1,x2,y2,x4,y4)) return true;    else return false;  }  if(s13==s14&&s23==s24&&s13==s23){    if(IsRightAngle(x1,y1,x3,y3,x4,y4)) return true;    else return false;  }  return false;}int main(){  int x1,y1,x2,y2,x3,y3,x4,y4;  cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;  cout<<IsSquare(x1,y1,x2,y2,x3,y3,x4,y4)<<endl;  return 0;}

测试用例:

0 1 1 0 1 1 0 0

输出结果为1(true)

补充:判断四个点是否可以构成矩形(优雅的解法!!!)

首先我们需要先检查输入的四个点是不是有重复。然后判断四个角是不是直角即可。

def isOrthogonal(p1, p2, p3):  return (p2[0] - p1[0]) * (p2[0] - p3[0]) + (p2[1] - p1[1]) * (p2[1] - p3[1]) == 0def _isRectangle(p1, p2, p3, p4):  return self.isOrthogonal(p1, p2, p3) and self.isOrthogonal(p2, p3, p4) and self.isOrthogonal(p3, p4, p1)def isRectangle(p1, p2, p3, p4):  return self._isRectangle(p1, p2, p3, p4) or self._isRectangle(p2, p3, p1, p4) or self._isRectangle(p1, p3, p2, p4)

一个更加巧妙地回答,我们可以先计算中点的位置

C++怎么判断四个点是否构成正方形

然后再计算中点到四个点的距离是不是一样即可。

def dis(p1, p2):  return (p1[0] - p2[0])**2 + (p1[1] - p2[1])**2def isRectangle(p1, p2, p3, p4):  x_c = (p1[0] + p2[0] + p3[0] + p4[0])/4  y_c = (p1[1] + p2[1] + p3[1] + p4[1])/4  d1 = dis(p1, (x_c,y_c))  d2 = dis(p2, (x_c,y_c))  d3 = dis(p3, (x_c,y_c))  d4 = dis(p4, (x_c,y_c))  return d1 == d2 and d1 == d3 and d1 == d4

关于“C++怎么判断四个点是否构成正方形”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯