文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

OpenCV-Python实现人脸美白算法的实例

2024-04-02 19:55

关注

人脸美白原理

人脸美白原理说透了,就是一种图像的颜色空间处理,所以我们需要通过颜色空间进行设计。

不过,我们先来参考以下PS对于图像美白的处理步骤:

通过PS的操作,我们大致可以知道需要创建一个与原图同等大小维度的图像,然后全部赋值为白色,然后通过图像图像加权和将两个图像叠加即可。

不过,这里明显存在很多问题,在PS中,我们虽然创建了全白色的图层,但是我们可以剪裁或者使用画笔工具只让白色叠加倒人物身上。而程序中,我们这么做会导致整个图像偏白,效果非常不理想。

那么,我们就需要考虑一个新的思路来实现人脸美白效果。

根据论文“A Two-Stage Contrast Enhancement Algorithm for Digital Images”,采用映射表,使原图在色阶上有所增强,并在图像两端亮度相对减弱,中间增强,则会产生不错的美白效果,又能使图像白的更自然。

这里,我们提供一个美白映射表Color_list:


Color_list = [
	1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39,
	41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 73, 74,
	76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 99, 100, 102, 103, 105,
	106, 108, 109, 111, 112, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 128,
	130, 131, 133, 134, 135, 137, 138, 139, 141, 142, 143, 145, 146, 147, 149, 150,
	151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 170,
	171, 172, 173, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
	188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
	204, 205, 205, 206, 207, 208, 209, 210, 211, 211, 212, 213, 214, 215, 215, 216,
	217, 218, 219, 219, 220, 221, 222, 222, 223, 224, 224, 225, 226, 226, 227, 228,
	228, 229, 230, 230, 231, 232, 232, 233, 233, 234, 235, 235, 236, 236, 237, 237,
	238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 244, 245,
	245, 246, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 250,
	251, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 253, 254, 254, 254,
	254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 256]

实现人脸美白

既然人脸美白的原理,以及美白的颜色映射表都给到了你。下面,我们就可以实现人脸美白效果,具体代码如下所示:


def face_whitening(fileName):
    img = cv2.imread(fileName)
    img = cv2.bilateralFilter(img, 19, 75, 75)
    height, width, n = img.shape
    img2 = img.copy()
    for i in range(height):
        for j in range(width):
            b = img2[i, j, 0]
            g = img2[i, j, 1]
            r = img2[i, j, 2]
            img2[i, j, 0] = Color_list[b]
            img2[i, j, 1] = Color_list[g]
            img2[i, j, 2] = Color_list[r]
    cv2.imwrite("59_1.jpg",img2)

    image = Image.open("59_1.jpg")
    # 锐度调节
    enh_img = ImageEnhance.Sharpness(image)
    image_sharped = enh_img.enhance(1.2)
    # 颜色均衡调节
    con_img = ImageEnhance.Contrast(image_sharped)
    image_con = con_img.enhance(1.2)
    image_con.save("59_2.jpg")

    img1 = cv2.imread("58.jpg")
    img2 = cv2.imread("59_2.jpg")
    cv2.imshow("1", img1)
    cv2.imshow("2", img2)
    cv2.waitKey()
    cv2.destroyAllWindows()


if __name__ == "__main__":
    face_whitening("58.jpg")

运行之后,效果如下:

美白效果

到此这篇关于OpenCV-Python实现人脸美白算法的实例的文章就介绍到这了,更多相关OpenCV人脸美白 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯