综述
FSP的全称是Firmware Support Package。FSP有以下的特性:
- FSP提供了Intel重要组件(包括处理器、内存控制器、芯片组等)的初始化;
- FSP被编译成独立的二进制,并可以集成到Bootloader中,这里说的Bootloader可以是Slim Bootloader,coreboot,UEFI等等;
- FSP的优点有免费、方便集成、可减少开发时间,等等。
FSP中包含若干个部分,如下图所示:
按作用来分它包含三个大的组件,分别是:
FSP-T:它主要用来初始化CACHE以及其它早期需要的初始化,对应提供给外部的接口是TempRamInit()
;
FSP-M:它主要用来初始化内存以及其它需要的初始化,对应提供给外部的接口是FspMemoryInit()
和TempRamExit()
,前者用于内存初始化,后者用于处理FSP-T中使用的CACHE内容;
FPS-S:它主要是CPU和芯片组的初始化,对应提供给外部的接口是FspSiliconInit()
和NotifyPhase()
,其中后者又会在不同的阶段调用,包括PCIE扫描之后,ReadyToBoot时和EndOfBootServices的时候;
按功能来区分,每个组件都包含头部、配置和API三个部分。头部是固定的,配置用于一些可控的定制化,API就是功能代码。Bootloader要操作FSP,就需要完成文件配置,接口调用等。
BootLoader调用FSP的整个流程如下图所示:
Bootloader中需要有相应的代码做上述的操作,以Slim Bootloader为例,有一个IntelFsp2Pkg用来处理FSP相关的内容。不过需要注意,这里的IntelFsp2Pkg并不提供FSP源代码的,只是提供了EDK与FSP之间的中间层,真正的用来初始化Intel组件的FSP的代码并没有开源,所以这里也拿不到,不过可以拿到用于QEMU的FSP源代码,后续使用的就是这个。
编译
代码主要是https://gitee.com/jiangwei0512/edk2-beni中的QemuFspPkg,它是用在QEMU上的FSP,它有源码可以下载,而其它Intel的FSP基本是不开源的,没有办法下载到,所以这里只能用QEMU的FSP作为示例。
QEMU对应的FSP通过BuildFsp.py进行编译得到,该脚本执行三个步骤:
- Prebuild
- Build
- PostBuild
PostBuild
Prebuild的流程如下:
1.构建FspHeader.inf实际上就是创建FSP Header的头部,它是固定的格式,位于QemuFspPkg\FspHeader\FspHeader.aslc,内容如下:
TABLES mTable =
{
{
FSP_INFO_HEADER_SIGNATURE, // UINT32 Signature (FSPH)
sizeof(FSP_INFO_HEADER), // UINT32 HeaderLength;
{0x00, 0x00}, // UINT8 Reserved1[2];
FixedPcdGet8(PcdFspHeaderSpecVersion), // UINT8 SpecVersion;
FixedPcdGet8(PcdFspHeaderRevision), // UINT8 HeaderRevision;
FixedPcdGet32(PcdFspImageRevision), // UINT32 ImageRevision;
UINT64_TO_BYTE_ARRAY(
FixedPcdGet64(PcdFspImageIdString)), // CHAR8 ImageId[8];
0x12345678, // UINT32 ImageSize;
0x12345678, // UINT32 ImageBase;
FixedPcdGet16(PcdFspImageAttributes), // UINT16 ImageAttribute;
FixedPcdGet16(PcdFspComponentAttributes), // UINT16 ComponentAttribute; Bits[15:12] - 0001b: FSP-T, 0010b: FSP-M, 0011b: FSP-S
0x12345678, // UINT32 CfgRegionOffset;
0x12345678, // UINT32 CfgRegionSize;
0x00000000, // UINT32 Reserved2;
0x00000000, // UINT32 TempRamInitEntry;
0x00000000, // UINT32 Reserved3;
0x00000000, // UINT32 NotifyPhaseEntry;
0x00000000, // UINT32 FspMemoryInitEntry;
0x00000000, // UINT32 TempRamExitEntry;
0x00000000, // UINT32 FspSiliconInitEntry;
},
{
FSP_INFO_EXTENDED_HEADER_SIGNATURE, // UINT32 Signature (FSPE)
sizeof(FSP_INFO_EXTENDED_HEADER), // UINT32 Length;
FSPE_HEADER_REVISION_1, // UINT8 Revision;
0x00, // UINT8 Reserved;
{FSP_PRODUCER_ID}, // CHAR8 FspProducerId[6];
0x00000001, // UINT32 FspProducerRevision;
0x00000000, // UINT32 FspProducerDataSize;
},
{
FSP_FSPP_SIGNATURE, // UINT32 Signature (FSPP)
sizeof(FSP_PATCH_TABLE), // UINT16 Length;
FSPP_HEADER_REVISION_1, // UINT8 Revision;
0x00, // UINT8 Reserved;
1 // UINT32 PatchEntryNum;
},
0xFFFFFFFC // UINT32 Patch FVBASE at end of FV
};
里面的某些数据在之后还会被修改,通过这个头部就可以找到对应API的位置,从而进行调用。
2.UPD txt文件是Build\QemuFspPkg\DEBUG_VS2019\FV(根据编译工具的不同,对应的目录可能存在差异)下的如下内容:
txt文件名对应的是三个FSP组件的GUID(位于BuildFsp.py):
FspGuid = {
'FspTUpdGuid' : '34686CA3-34F9-4901-B82A-BA630F0714C6',
'FspMUpdGuid' : '39A250DB-E465-4DD1-A2AC-E2BD3C0E2385',
'FspSUpdGuid' : 'CAE3605B-5B34-4C85-B3D7-27D54273C40F'
}
里面的内容主要是一些PCD,以39A250DB-E465-4DD1-A2AC-E2BD3C0E2385.txt为例:
## @file
#
# THIS IS AUTO-GENERATED FILE BY BUILD TOOLS AND PLEASE DO NOT MAKE MODIFICATION.
#
# This file lists all VPD informations for a platform collected by build.exe.
#
# Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
gQemuFspPkgTokenSpaceGuid.Signature|DEFAULT|0x0000|8|0x4D5F4450554D4551
gQemuFspPkgTokenSpaceGuid.Revision|DEFAULT|0x0008|1|0x01
gQemuFspPkgTokenSpaceGuid.Reserved|DEFAULT|0x0009|23|{0x00}
gQemuFspPkgTokenSpaceGuid.Revision|DEFAULT|0x0020|1|0x01
gQemuFspPkgTokenSpaceGuid.Reserved|DEFAULT|0x0021|3|{0x00}
gQemuFspPkgTokenSpaceGuid.NvsBufferPtr|DEFAULT|0x0024|4|0x00000000
gQemuFspPkgTokenSpaceGuid.StackBase|DEFAULT|0x0028|4|0x00070000
gQemuFspPkgTokenSpaceGuid.StackSize|DEFAULT|0x002C|4|0x00010000
gQemuFspPkgTokenSpaceGuid.BootLoaderTolumSize|DEFAULT|0x0030|4|0x00000000
gPlatformFspPkgTokenSpaceGuid.Bootmode|DEFAULT|0x0034|4|0x00000000
gQemuFspPkgTokenSpaceGuid.Reserved1|DEFAULT|0x0038|8|{0x00}
gQemuFspPkgTokenSpaceGuid.SerialDebugPortAddress|DEFAULT|0x0040|4|0x00000000
gQemuFspPkgTokenSpaceGuid.SerialDebugPortType|DEFAULT|0x0044|1|0x02
gQemuFspPkgTokenSpaceGuid.SerialDebugPortDevice|DEFAULT|0x0045|1|0x02
gQemuFspPkgTokenSpaceGuid.SerialDebugPortStrideSize|DEFAULT|0x0046|1|0x02
gQemuFspPkgTokenSpaceGuid.UnusedUpdSpace0|DEFAULT|0x0047|0x0031|{0}
gQemuFspPkgTokenSpaceGuid.ReservedFspmUpd|DEFAULT|0x0078|4|{0x00}
gQemuFspPkgTokenSpaceGuid.UnusedUpdSpace1|DEFAULT|0x007C|0x0002|{0}
gQemuFspPkgTokenSpaceGuid.UpdTerminator|DEFAULT|0x007E|2|0x55AA
txt文件的来源是QemuFspPkg\QemuFspPkg.dsc,里面有这些PCD的初始化值,位于[PcdsDynamicVpd.Upd]
这个Section,其中的UnusedUpdSpaceX
也是在dsc文件中通过PCD指定的偏移来确定的。
3.UPD bin文件名也对应到前面提到的GUID,以39A250DB-E465-4DD1-A2AC-E2BD3C0E2385.bin为例:
bin文件跟txt文件中的PCD值是一一对应的。
4.UPD头文件和bsf文件比较直观,不做详细说明,它们也是通过QemuFspPkg\QemuFspPkg.dsc创建的。UPD头文件中还包含一个通用的头部结构体:
#pragma pack(1)
///
/// FSP_UPD_HEADER Configuration.
///
typedef struct {
///
/// UPD Region Signature. This signature will be
/// "XXXXXX_T" for FSP-T
/// "XXXXXX_M" for FSP-M
/// "XXXXXX_S" for FSP-S
/// Where XXXXXX is an unique signature
///
UINT64 Signature;
///
/// Revision of the Data structure.
/// For FSP spec 2.0/2.1 value is 1.
/// For FSP spec 2.2 value is 2.
///
UINT8 Revision;
UINT8 Reserved[23];
} FSP_UPD_HEADER;
#pragma pack()
每个平台的UPD和bsf内容都是不同的,甚至同一个平台的不同版本也可能存在差异,不同的FSP-X对应不同的UPD,分别是FSPT_UPD
、FSPM_UPD
和FSPS_UPD
,它们分别存放在FsptUpd.h、FspmUpd.h和FspsUpd.h中。以FSPM_UPD
结构体为例:
typedef struct {
FSP_UPD_HEADER FspUpdHeader;
FSPM_ARCH_UPD FspmArchUpd;
FSP_M_CONFIG FspmConfig;
UINT8 UnusedUpdSpace1[2];
UINT16 UpdTerminator;
} FSPM_UPD;
其中的内容跟前面的UPD txt中的PCD一一对应。
上述的文件都在Build\QemuFspPkg\DEBUG_VS2019\FV(根据编译工具的不同,对应的目录可能存在差异)创建,总的来说就是为了创建FSP的UPD配置文件和对应用在代码中的头文件,头文件会被拷贝到其它位置也是为了代码能够调用到。而UPD配置文件会通过二进制的方式包含到QemuFspPkg\QemuFspPkg.fdf,下面是一个示例:
#
# Project specific configuration data files
#
!ifndef $(CFG_PREBUILD)
FILE RAW = $(FSP_M_UPD_FFS_GUID) {
SECTION RAW = $(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/$(FSP_M_UPD_TOOL_GUID).bin
}
!endif
Build
该过程仅仅是执行build操作而已,对应的代码:
def Build (target, toolchain):
cmd = '%s -p QemuFspPkg/QemuFspPkg.dsc -a IA32 -b %s -t %s -y Report%s.log' % (
'build' if os.name == 'posix' else 'build.bat', target, toolchain, target)
ret = subprocess.call(cmd.split(' '))
if ret:
Fatal('Failed to do Build QEMU FSP!')
print('End of Build...')
可以看到执行对象是QemuFspPkg.dsc。完成这一步之后会生成FSP-M.Fv、FSP-S.Fv、FSP-T.Fv和QEMUFSP.fd。
到这里FSP二进制已经生成,就是QEMUFSP.fd,但是它不能直接使用,还需要后续操作。
PostBuild
这一步主要是通过PatchFv.py来修改前文生成的QEMUFSP.fd,Patch前后:
这里具体Patch了哪部分内容,需要先了解FSP二进制的组成部分,可以参考FSP二进制组成分析。这里Patch的大部分都是FSP Header中的内容,对应的默认初始化内容就是前面提到的QemuFspPkg\FspHeader\FspHeader.aslc,其结构体如下:
///
/// FSP Information Header as described in FSP v2.0 Spec section 5.1.1.
///
typedef struct {
///
/// Byte 0x00: Signature ('FSPH') for the FSP Information Header.
///
UINT32 Signature;
///
/// Byte 0x04: Length of the FSP Information Header.
///
UINT32 HeaderLength;
///
/// Byte 0x08: Reserved.
///
UINT8 Reserved1[2];
///
/// Byte 0x0A: Indicates compliance with a revision of this specification in the BCD format.
///
UINT8 SpecVersion;
///
/// Byte 0x0B: Revision of the FSP Information Header.
///
UINT8 HeaderRevision;
///
/// Byte 0x0C: Revision of the FSP binary.
///
UINT32 ImageRevision;
///
/// Byte 0x10: Signature string that will help match the FSP Binary to a supported HW configuration.
///
CHAR8 ImageId[8];
///
/// Byte 0x18: Size of the entire FSP binary.
///
UINT32 ImageSize;
///
/// Byte 0x1C: FSP binary preferred base address.
///
UINT32 ImageBase;
///
/// Byte 0x20: Attribute for the FSP binary.
///
UINT16 ImageAttribute;
///
/// Byte 0x22: Attributes of the FSP Component.
///
UINT16 ComponentAttribute;
///
/// Byte 0x24: Offset of the FSP configuration region.
///
UINT32 CfgRegionOffset;
///
/// Byte 0x28: Size of the FSP configuration region.
///
UINT32 CfgRegionSize;
///
/// Byte 0x2C: Reserved2.
///
UINT32 Reserved2;
///
/// Byte 0x30: The offset for the API to setup a temporary stack till the memory is initialized.
///
UINT32 TempRamInitEntryOffset;
///
/// Byte 0x34: Reserved3.
///
UINT32 Reserved3;
///
/// Byte 0x38: The offset for the API to inform the FSP about the different stages in the boot process.
///
UINT32 NotifyPhaseEntryOffset;
///
/// Byte 0x3C: The offset for the API to initialize the memory.
///
UINT32 FspMemoryInitEntryOffset;
///
/// Byte 0x40: The offset for the API to tear down temporary RAM.
///
UINT32 TempRamExitEntryOffset;
///
/// Byte 0x44: The offset for the API to initialize the CPU and chipset.
///
UINT32 FspSiliconInitEntryOffset;
///
/// Byte 0x48: Offset for the API for the optional Multi-Phase processor and chipset initialization.
/// This value is only valid if FSP HeaderRevision is >= 5.
/// If the value is set to 0x00000000, then this API is not available in this component.
///
UINT32 FspMultiPhaseSiInitEntryOffset;
} FSP_INFO_HEADER;
其中的ImageSize
、ImageBase
、ImageAttribute
、ComponentAttribute
、CfgRegionOffset
、CfgRegionSize
、TempRamInitEntryOffset
、FspMemoryInitEntryOffset
、TempRamExitEntryOffset
、FspSiliconInitEntryOffset
、NotifyPhaseEntryOffset
等都需要修改。
因为每个FSP-X都有一个FSP_INFO_HEADER
结构体,所以前提提到的XXXOffset
会针对不同的FSP-X组件做对应的修改,比如FSP-T只需要TempRamInitEntryOffset
。
除了FSP Header的Patch,这里还有一个点被Patch了:
它们对应的是模块的入口(IntelFsp2Pkg\FspSecCore\Ia32\FspHelper.nasm):
global ASM_PFX(FspInfoHeaderRelativeOff)
ASM_PFX(FspInfoHeaderRelativeOff):
DD 0x12345678 ; This value must be patched by the build script
从上面的代码也可以看到这部分是需要Patch的。
FSP二进制组成分析
二进制的组成如下:
FSP每个组件都是一个FV,所以都有一个FV Header(EFI_FIRMWARE_VOLUME_HEADER
,位于MdePkg\Include\Pi\PiFirmwareVolume.h),大小是0x48个字节,之后是一个FV Extended Header(EFI_FIRMWARE_VOLUME_EXT_HEADER
,位于MdePkg\Include\Pi\PiFirmwareVolume.h),之后才是FSP的内容,如下图所示:
FSP组件的第一个模块是FSP Header,对应二进制(Header的第一个成员是"FSPH",最后一个成员是0xFFFFFFFC)中:
这里可以看到里面有一些数据比较奇怪,都是0x12345678和0x00000000,这些都是占位符,并不是真正的有效数据,是通过FspHeader.aslc生成的,在后期这些数据会被Patch成有效的值。
FSP组件的第二个模块是UPD数据,它在Prebuild中生成,对应的数据(UPD数据的第一个成员是Signature(本例中是QEMUPD_T),最后一个成员是0x55AA):
再之后是通用的模块。以QEMU中的FSP对应的fdf文件为例:
#
# FSP header
#
INF RuleOverride = FSPHEADER $(FSP_PACKAGE)/FspHeader/FspHeader.inf
#
# Project specific configuration data files
#
!ifndef $(CFG_PREBUILD)
FILE RAW = $(FSP_T_UPD_FFS_GUID) {
SECTION RAW = $(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/$(FSP_T_UPD_TOOL_GUID).bin
}
!endif
INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreT.inf
使用
用于Slim Bootloader的FSP需要放到前者指定的目录,对于QEMU来说对应的是Silicon\QemuSocPkg\FspBin,同时FSP对应的UPD头文件也需要放到指定目录。之后执行Slim Bootloader的各个阶段都会调用FSP的API接口,这里一一说明。
Stage1A
Stage1A阶段会执行FSP中的FspTempRamInit()
接口,由于是执行阶段的早期,这里只有汇编部分的代码,具体的位置在BootloaderCorePkg\Stage1A\Ia32\SecEntry.nasm,对应代码:
global ASM_PFX(_ModuleEntryPoint)
ASM_PFX(_ModuleEntryPoint):
movd mm0, eax
;
; Read time stamp
;
rdtsc
mov esi, eax
mov edi, edx
;
; Early board hooks
;
mov esp, EarlyBoardInitRet
jmp ASM_PFX(EarlyBoardInit)
EarlyBoardInitRet:
mov esp, FspTempRamInitRet
jmp ASM_PFX(FspTempRamInit)
这里jmp
到BootloaderCorePkg\Library\FspApiLib\Ia32\FspTempRamInit.nasm:
global ASM_PFX(FspTempRamInit)
ASM_PFX(FspTempRamInit):
;
; This hook is called to initialize temporay RAM
; ESI, EDI need to be preserved
; ESP contains return address
; ECX, EDX return the temprary RAM start and end
;
;
; Get FSP-T base in EAX
;
mov ebp, esp
mov eax, dword [ASM_PFX(PcdGet32(PcdFSPTBase))]
;
; Find the fsp info header
; Jump to TempRamInit API
;
add eax, dword [eax + 094h + FSP_HEADER_TEMPRAMINIT_OFFSET]
mov esp, TempRamInitStack
jmp eax
TempRamInitDone:
mov esp, ebp
jmp esp
FSP中的FspTempRamInit()
真正的入口是PcdGet32(PcdFSPTBase)+ 094h + FSP_HEADER_TEMPRAMINIT_OFFSET
,PcdFSPTBase
的值是:
gPlatformModuleTokenSpaceGuid.PcdFSPTBase | $(FSP_T_BASE)
FSP_T_BASE
表示的是FSP-T.bin的开始位置,094h
在前面也已经介绍过,其前面的内容是FV Header,该地址开始是FSP Header,而FSP_HEADER_TEMPRAMINIT_OFFSET
是FSP Header的偏移,该位置对应成员是TempRamInitEntryOffset
,到这里就对应起来了,FspTempRamInit()
即是该位置的值。
不过对于FSP_T_BASE
的值,它是FSP-T放到系统内存中位置的地址,可以在BootloaderCorePkg\Platform.dsc中找到:
DEFINE FSP_T_BASE = 0xFFFF0000
这个值也跟SBL二进制产生关系:
Flash Map Information: +------------------------------------------------------------------------+ | FLASH MAP | | (RomSize = 0x00721000) | +------------------------------------------------------------------------+ | NAME | OFFSET (BASE) | SIZE | FLAGS | +----------+------------------------+------------+-----------------------+ +------------------------------------------------------------------------+ | TOP SWAP A | +------------------------------------------------------------------------+ | SG1A | 0x711000(0xFFFF0000) | 0x010000 | Uncompressed, TS_A | +------------------------------------------------------------------------+ | TOP SWAP B | +------------------------------------------------------------------------+ | SG1A | 0x701000(0xFFFE0000) | 0x010000 | Uncompressed, TS_B | +------------------------------------------------------------------------+ | REDUNDANT A | +------------------------------------------------------------------------+ | KEYH | 0x700000(0xFFFDF000) | 0x001000 | Uncompressed, R_A | | CNFG | 0x6ff000(0xFFFDE000) | 0x001000 | Uncompressed, R_A | | FWUP | 0x6e7000(0xFFFC6000) | 0x018000 | Compressed , R_A | | SG1B | 0x6b7000(0xFFF96000) | 0x030000 | Compressed , R_A | | SG02 | 0x69f000(0xFFF7E000) | 0x018000 | Compressed , R_A | | EMTY | 0x681000(0xFFF60000) | 0x01e000 | Uncompressed, R_A | +------------------------------------------------------------------------+ | REDUNDANT B | +------------------------------------------------------------------------+ | KEYH | 0x680000(0xFFF5F000) | 0x001000 | Uncompressed, R_B | | CNFG | 0x67f000(0xFFF5E000) | 0x001000 | Uncompressed, R_B | | FWUP | 0x667000(0xFFF46000) | 0x018000 | Compressed , R_B | | SG1B | 0x637000(0xFFF16000) | 0x030000 | Compressed , R_B | | SG02 | 0x61f000(0xFFEFE000) | 0x018000 | Compressed , R_B | | EMTY | 0x601000(0xFFEE0000) | 0x01e000 | Uncompressed, R_B | +------------------------------------------------------------------------+ | NON REDUNDANT | +------------------------------------------------------------------------+ | PTES | 0x600000(0xFFEDF000) | 0x001000 | Uncompressed, NR | | IPFW | 0x5f0000(0xFFECF000) | 0x010000 | Uncompressed, NR | | EPLD | 0x3e3000(0xFFCC2000) | 0x20d000 | Uncompressed, NR | | PYLD | 0x2e3000(0xFFBC2000) | 0x100000 | Compressed , NR | | VARS | 0x2e1000(0xFFBC0000) | 0x002000 | Uncompressed, NR | | EMTY | 0x001000(0xFF8E0000) | 0x2e0000 | Uncompressed, NR | +------------------------------------------------------------------------+ | NON VOLATILE | +------------------------------------------------------------------------+ | RSVD | 0x000000(0xFF8DF000) | 0x001000 | Uncompressed, NV | +----------+------------------------+------------+-----------------------+Flash Map Information:
+------------------------------------------------------------------------+
| FLASH MAP |
| (RomSize = 0x00721000) |
+------------------------------------------------------------------------+
| NAME | OFFSET (BASE) | SIZE | FLAGS |
+----------+------------------------+------------+-----------------------+
+------------------------------------------------------------------------+
| TOP SWAP A |
+------------------------------------------------------------------------+
| SG1A | 0x711000(0xFFFF0000) | 0x010000 | Uncompressed, TS_A |
+------------------------------------------------------------------------+
| TOP SWAP B |
+------------------------------------------------------------------------+
| SG1A | 0x701000(0xFFFE0000) | 0x010000 | Uncompressed, TS_B |
+------------------------------------------------------------------------+
| REDUNDANT A |
+------------------------------------------------------------------------+
| KEYH | 0x700000(0xFFFDF000) | 0x001000 | Uncompressed, R_A |
| CNFG | 0x6ff000(0xFFFDE000) | 0x001000 | Uncompressed, R_A |
| FWUP | 0x6e7000(0xFFFC6000) | 0x018000 | Compressed , R_A |
| SG1B | 0x6b7000(0xFFF96000) | 0x030000 | Compressed , R_A |
| SG02 | 0x69f000(0xFFF7E000) | 0x018000 | Compressed , R_A |
| EMTY | 0x681000(0xFFF60000) | 0x01e000 | Uncompressed, R_A |
+------------------------------------------------------------------------+
| REDUNDANT B |
+------------------------------------------------------------------------+
| KEYH | 0x680000(0xFFF5F000) | 0x001000 | Uncompressed, R_B |
| CNFG | 0x67f000(0xFFF5E000) | 0x001000 | Uncompressed, R_B |
| FWUP | 0x667000(0xFFF46000) | 0x018000 | Compressed , R_B |
| SG1B | 0x637000(0xFFF16000) | 0x030000 | Compressed , R_B |
| SG02 | 0x61f000(0xFFEFE000) | 0x018000 | Compressed , R_B |
| EMTY | 0x601000(0xFFEE0000) | 0x01e000 | Uncompressed, R_B |
+------------------------------------------------------------------------+
| NON REDUNDANT |
+------------------------------------------------------------------------+
| PTES | 0x600000(0xFFEDF000) | 0x001000 | Uncompressed, NR |
| IPFW | 0x5f0000(0xFFECF000) | 0x010000 | Uncompressed, NR |
| EPLD | 0x3e3000(0xFFCC2000) | 0x20d000 | Uncompressed, NR |
| PYLD | 0x2e3000(0xFFBC2000) | 0x100000 | Compressed , NR |
| VARS | 0x2e1000(0xFFBC0000) | 0x002000 | Uncompressed, NR |
| EMTY | 0x001000(0xFF8E0000) | 0x2e0000 | Uncompressed, NR |
+------------------------------------------------------------------------+
| NON VOLATILE |
+------------------------------------------------------------------------+
| RSVD | 0x000000(0xFF8DF000) | 0x001000 | Uncompressed, NV |
+----------+------------------------+------------+-----------------------+
由于SBL会放到4G以下的空间,而FSP-T.Fv放在了SG1A中,大小是0x10000,所以位置就是0xFFFF0000。通过下述命令能够更清楚的看出来:
F:\Gitee\sbl>BootloaderCorePkg\Tools\IfwiUtility.py view -i Outputs\qemu\SlimBootloader.bin
IFWI [O:0x00000000 L:0x00721000]
BIOS [O:0x00000000 L:0x00721000]
NVS [O:0x00000000 L:0x00001000]
RSVD [O:0x00000000 L:0x00001000]
NRD [O:0x00001000 L:0x00600000]
EMTY [O:0x00001000 L:0x002E0000]
VARS [O:0x002E1000 L:0x00002000]
PYLD [O:0x002E3000 L:0x00100000]
EPLD [O:0x003E3000 L:0x0020D000]
IPFW [O:0x005F0000 L:0x00010000]
PTES [O:0x00600000 L:0x00001000]
RD1 [O:0x00601000 L:0x00080000]
EMTY [O:0x00601000 L:0x0001E000]
SG02 [O:0x0061F000 L:0x00018000]
SG1B [O:0x00637000 L:0x00030000]
FWUP [O:0x00667000 L:0x00018000]
CNFG [O:0x0067F000 L:0x00001000]
KEYH [O:0x00680000 L:0x00001000]
RD0 [O:0x00681000 L:0x00080000]
EMTY [O:0x00681000 L:0x0001E000]
SG02 [O:0x0069F000 L:0x00018000]
SG1B [O:0x006B7000 L:0x00030000]
FWUP [O:0x006E7000 L:0x00018000]
CNFG [O:0x006FF000 L:0x00001000]
KEYH [O:0x00700000 L:0x00001000]
TS1 [O:0x00701000 L:0x00010000]
SG1A [O:0x00701000 L:0x00010000]
TS0 [O:0x00711000 L:0x00010000]
SG1A [O:0x00711000 L:0x00010000] ---- 这里的最后就是0x100000000的位置
SBL二进制和FSP-T.bin的对应关系:
最终可以查看到PcdGet32(PcdFSPTBase)+ 094h + FSP_HEADER_TEMPRAMINIT_OFFSET
处的值是0x473(位于0x7110C4),这也跟编译FSP时的Patch对应:
Patched offset 0x000370C4:[00000000] with value 0x00000473 # TempRamInit API
从上图可以看到该位置的值是EB 0B 90 90 90
等等,可以确定这些就是代码了,但是它对应到的是哪个模块呢?其实可以从QemuFspPkg\QemuFspPkg.fdf中找到答案:
[FV.FSP-T]
BlockSize = $(FLASH_BLOCK_SIZE)
FvAlignment = 16
ERASE_POLARITY = 1
MEMORY_MAPPED = TRUE
STICKY_WRITE = TRUE
LOCK_CAP = TRUE
LOCK_STATUS = TRUE
WRITE_DISABLED_CAP = TRUE
WRITE_ENABLED_CAP = TRUE
WRITE_STATUS = TRUE
WRITE_LOCK_CAP = TRUE
WRITE_LOCK_STATUS = TRUE
READ_DISABLED_CAP = TRUE
READ_ENABLED_CAP = TRUE
READ_STATUS = TRUE
READ_LOCK_CAP = TRUE
READ_LOCK_STATUS = TRUE
FvNameGuid = 52F1AFB6-78A6-448f-8274-F370549AC5D0
#
# FSP header
#
INF RuleOverride = FSPHEADER $(FSP_PACKAGE)/FspHeader/FspHeader.inf
#
# Project specific configuration data files
#
!ifndef $(CFG_PREBUILD)
FILE RAW = $(FSP_T_UPD_FFS_GUID) {
SECTION RAW = $(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/$(FSP_T_UPD_TOOL_GUID).bin
}
!endif
INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreT.inf
根据前面的介绍,FspHeader.inf是FSP Header,$(FSP_T_UPD_TOOL_GUID).bin是UPD配置文件,那么FspSecCoreT.inf就应该是包含FspTempRamInit()
函数代码的模块了。
这里直接找对应的模块,它被编译成一个二进制FspSecCoreT.efi,efi文件符合的是《Microsoft Portable Executable and Common Object File Format Specification》(后称Spec)规范。文档可以点击下载。在这个文档中描述了efi二进制头部的格式如下:
通过它可以找到真正的代码入口位置,不过也不需要一一计算,可以通过对应的map文件(这里就是Build\QemuFspPkg\DEBUG_VS2019\IA32\IntelFsp2Pkg\FspSecCore\FspSecCoreT\DEBUG\FspSecCoreT.map)找到需要的入口:
Address Publics by Value Rva+Base Lib:Object
0001:000001fb _TempRamInitApi 0000041b FspSecCoreT:FspApiEntryT.obj
可以看到地址是0000041b
,查看FspSecCoreT.efi二进制:
可以看到数据已经对应上了。再进一步分析这些数据的话,会发现EB实际上是一个跳转指令(注意之类是16位的代码,所以是近跳转),可以参考《64-ia-32-architectures-software-developer-instruction-set-reference-manual.pdf》中的“JMP—Jump”章节:
cb
表示的是跳转偏移,这里的值是0xB,对应的代码在IntelFsp2Pkg\FspSecCore\Ia32\SaveRestoreSseNasm.inc:
%macro ENABLE_SSE 0
;
; Initialize floating point units
;
jmp NextAddress
align 4 ; 需要4字节对齐,所以后面补充了90,表示的是nop指令,总共3个字节
;
; Float control word initial value:
; all exceptions masked, double-precision, round-to-nearest
;
FpuControlWord DW 027Fh ; 占据2个字节
;
; Multimedia-extensions control word:
; all exceptions masked, round-to-nearest, flush to zero for masked underflow
;
MmxControlWord DD 01F80h ; 占据2个字节
SseError:
;
; Processor has to support SSE
;
jmp SseError ; 对应的机器码是EB FE,因为是循环执行,相当于跳转回去执行同一条命令,而该命令是2个字节,所以就是-2,等于0xFE
NextAddress: ; 理论上到这里只有9个字节,但是代码中跳转了0xB,也就是有11个字节,多出来的2个字节用0补上了,应该也是为了4字节对齐
到这里整个调用流程就完整了。
Stage1B
本阶段SBL会调用FSP中的FspMemoryInit()
,对应的代码在BootloaderCorePkg\Stage1B\Stage1B.c:
// Initialize memory
HobList = NULL;
DEBUG ((DEBUG_INIT, "Memory Init\n"));
AddMeasurePoint (0x2020);
Status = CallFspMemoryInit (PCD_GET32_WITH_ADJUST (PcdFSPMBase), &HobList);
AddMeasurePoint (0x2030);
CallFspMemoryInit()
执行的最重要的代码如下:
FspMemoryInit = (FSP_MEMORY_INIT)(UINTN)(FspHeader->ImageBase + \
FspHeader->FspMemoryInitEntryOffset);
Status = FspMemoryInit (&FspmUpd, HobList);
从这里可以看到这就是一个跳转的动作,而跳转的位置就是FSP_INFO_HEADER
中的成员FspMemoryInitEntryOffset
,这个在前面已经说明过。
FSP中对应的模块主要有:
#
# It is important to keep the proper order for these PEIMs
# for this implementation
#
INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreM.inf
INF MdeModulePkg/Core/Pei/PeiMain.inf
INF MdeModulePkg/Universal/PCD/Pei/Pcd.inf
#
# Project specific PEIMs
#
INF $(FSP_PACKAGE)/FspmInit/FspmInit.inf
FspSecCoreM.inf可以认为是一个伪SEC代码,主要的目的就是为了进入之后的PEI阶段,即PeiMain.inf,它跟UEFI中的PEI没有本质的区别,不过能够Dispatch的模块仅有后面的两个,Pcd.inf只是功能模块在这里并不重要,而FspmInit.inf就是内存初始化的主体。下面会简单介绍其中的主要模块。
FspSecCoreM.inf对应的入口:
;----------------------------------------------------------------------------
; FspMemoryInit API
;
; This FSP API is called after TempRamInit and initializes the memory.
;
;----------------------------------------------------------------------------
global ASM_PFX(FspMemoryInitApi)
ASM_PFX(FspMemoryInitApi):
mov eax, 3 ; FSP_API_INDEX.FspMemoryInitApiIndex
jmp ASM_PFX(FspApiCommon)
对应的调用路径:
调用路径中大部分是汇编,不过有几个是C函数,因为在Stage1A中已经可以使用C函数了。SecStartup()
位于UefiCpuPkg\SecCore\SecMain.c,是SEC的C函数入口,之后转入执行PeiMain,这个PEI阶段Dispatch的模块主要是FspmInit.inf,它完成真正的内存初始化操作。
FspmInit.inf模块中完成内存初始化的代码这里不多做介绍,因为真正的Intel平台中的代码要复杂的多,这里只是虚拟机的内存初始化,本身的意义不大,不过需要注意的是其中的某些代码:
EFI_PEI_NOTIFY_DESCRIPTOR mMemoryDiscoveredNotifyList = {
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMemoryDiscoveredPpiGuid,
MemoryDiscoveredPpiNotifyCallback
};
//
// Now that all of the pre-permanent memory activities have
// been taken care of, post a call-back for the permanent-memory
// resident services, such as HOB construction.
// PEI Core will switch stack after this PEIM exit. After that the MTRR
// can be set.
//
Status = PeiServicesNotifyPpi (&mMemoryDiscoveredNotifyList);
这个操作在gEfiPeiMemoryDiscoveredPpiGuid
被安装后被调用,而安装动作在PeiCore()
中完成:
//
// Alert any listeners that there is permanent memory available
//
PERF_INMODULE_BEGIN ("DisMem");
Status = PeiServicesInstallPpi (&mMemoryDiscoveredPpi);
gEfiPeiMemoryDiscoveredPpiGuid
对应的回调函数有很多个,这里关注的是FspmInit.inf模块中的。原因是这里有两层的跳转,其中有如下的代码:
EFI_STATUS
EFIAPI
MemoryDiscoveredPpiNotifyCallback (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,
IN VOID *Ppi
)
{
//
// Migrate FSP-M UPD data before destroying CAR
//
MigrateFspmUpdData ();
//
// Give control back after MemoryInitApi
//
FspMemoryInitDone (HobListPtr);
if (GetFspApiCallingIndex() == TempRamExitApiIndex) {
DEBUG ((DEBUG_INFO | DEBUG_INIT, "Memory Discovered Notify completed ...\n"));
//
// Give control back after TempRamExitApi
//
FspTempRamExitDone ();
}
}
这里的FspMemoryInitDone()
执行之后,CPU又会跳转到SBL代码中去执行,直到SBL中再次调用FSP中的TempRamExit()
这个API,对应SBL中的代码:
Status = CallFspTempRamExit (PCD_GET32_WITH_ADJUST (PcdFSPMBase), NULL);
然后会再次开始执行FspMemoryInitDone()
之后的代码,直到FspTempRamExitDone()
退出。
Stage1B中调用的两个API到这里就都介绍完毕了。
Stage2
本阶段SBL会调用FSP中FspSiliconInit()
,对应的代码在BootloaderCorePkg\Stage2\Stage2.c:
DEBUG ((DEBUG_INIT, "Silicon Init\n"));
AddMeasurePoint (0x3020);
Status = CallFspSiliconInit ();
AddMeasurePoint (0x3030);
FspResetHandler (Status);
ASSERT_EFI_ERROR (Status);
跟Stage1B中调用FSP中的API一样,这里也是一个跳转:
FspSiliconInit = (FSP_SILICON_INIT)(UINTN)(FspHeader->ImageBase + \
FspHeader->FspSiliconInitEntryOffset)
Status = FspSiliconInit (FspsUpdptr);
对应的FSP-S的执行过程跟FSP-M差不多,也有一个伪SEC模块,对应的模块如下所示:
#
# It is important to keep the proper order for these PEIMs
# for this implementation
#
INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreS.inf
INF MdeModulePkg/Core/DxeIplPeim/DxeIpl.inf
INF RuleOverride = PE32 $(FSP_PACKAGE)/FspsInit/FspsInit.inf
INF RuleOverride = PE32 $(FSP_PACKAGE)/QemuVideo/QemuVideo.inf
INF RuleOverride = PE32 IntelFsp2Pkg/FspNotifyPhase/FspNotifyPhasePeim.inf
不过实际上,当调用FspSiliconInit()
之后,代码还是从Stage1B中的FSP退出的位置开始执行的,即QemuFspPkg\FspmInit\FspmInit.c中的FspTempRamExitDone ()
之后开始执行代码,其对应的函数是ReportAndInstallNewFv ()
,也就是说,Stage2调用FSP-S之后,还是从PeiMain开始执行,当前述的函数安装了FV之后,就又开始Dispatch,完成上述模块的执行。
Stage2还是调用FSP中的NotifyPhase()
,对应SBL中的代码:
EFI_STATUS
EFIAPI
CallFspNotifyPhase (
FSP_INIT_PHASE Phase
)
{
FSP_INFO_HEADER *FspHeader;
FSP_NOTIFY_PHASE NotifyPhase;
NOTIFY_PHASE_PARAMS NotifyPhaseParams;
EFI_STATUS Status;
FspHeader = (FSP_INFO_HEADER *)(UINTN)(PcdGet32 (PcdFSPSBase) + FSP_INFO_HEADER_OFF);
ASSERT (FspHeader->Signature == FSP_INFO_HEADER_SIGNATURE);
ASSERT (FspHeader->ImageBase == PcdGet32 (PcdFSPSBase));
if (FspHeader->NotifyPhaseEntryOffset == 0) {
return EFI_UNSUPPORTED;
}
NotifyPhase = (FSP_NOTIFY_PHASE)(UINTN)(FspHeader->ImageBase +
FspHeader->NotifyPhaseEntryOffset);
NotifyPhaseParams.Phase = Phase;
DEBUG ((DEBUG_INFO, "Call FspNotifyPhase(%02X) ... ", Phase));
if (IS_X64) {
Status = Execute32BitCode ((UINTN)NotifyPhase, (UINTN)&NotifyPhaseParams, (UINTN)0, FALSE);
Status = (UINTN)LShiftU64 (Status & ((UINTN)MAX_INT32 + 1), 32) | (Status & MAX_INT32);
} else {
Status = NotifyPhase (&NotifyPhaseParams);
}
DEBUG ((DEBUG_INFO, "%r\n", Status));
return Status;
}
可以看到也只是一个简单的跳转。这里的参数FSP_INIT_PHASE
对应的值:
///
/// Enumeration of FSP_INIT_PHASE for NOTIFY_PHASE.
///
typedef enum {
///
/// This stage is notified when the bootloader completes the
/// PCI enumeration and the resource allocation for the
/// PCI devices is complete.
///
EnumInitPhaseAfterPciEnumeration = 0x20,
///
/// This stage is notified just before the bootloader hand-off
/// to the OS loader.
///
EnumInitPhaseReadyToBoot = 0x40,
///
/// This stage is notified just before the firmware/Preboot
/// environment transfers management of all system resources
/// to the OS or next level execution environment.
///
EnumInitPhaseEndOfFirmware = 0xF0
} FSP_INIT_PHASE;
标明了调用NotifyPhase()
的具体位置。
以上就是UEFI开发实战SlimBootloader中调用FSP的详细内容,更多关于UEFI开发SlimBootloader调用FSP的资料请关注编程网其它相关文章!