文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python pandas求方差和标准差的方法实例

2024-04-02 19:55

关注

准备

本文用到的表格内容如下:

先来看一下原始情形:


import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45
1  家电           电视机      56    784  34  156
2  家电            冰箱      78    345  24  785
3  书籍  python从入门到放弃      25     34  13   89
4  水果            葡萄     789     56   7  398

1.求方差

1.1对全表进行操作

1.1.1求取每列的方差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.var())

result:

实体店销售量    110164.3
线上销售量      92621.8
成本           118.5
售价         93741.3
dtype: float64

1.1.2 求取每行的方差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.var(axis=1))

result:

0     10558.250000
1    126019.666667
2    120818.000000
3      1130.250000
4    131161.666667
dtype: float64

1.2 对单独的一行或者一列进行操作

1.2.1 求取单独某一列的方差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].var())

result:

110164.3

1.2.2 求取单独某一行的方差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].var())

result:

实体店销售量   NaN
线上销售量    NaN
成本       NaN
售价       NaN
dtype: float64

1.3 对多行或者多列进行操作

1.3.1 求取多列的方差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].var())

result:

实体店销售量    110164.3
线上销售量      92621.8
dtype: float64

1.3.2 求取多行的方差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].var())

result:

实体店销售量       242.0
线上销售量     151250.0
成本           242.0
售价          6160.5
dtype: float64

2 求标准差

2.1对全表进行操作

2.1.1对每一列求标准差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.std())

result:

实体店销售量    331.910078
线上销售量     304.338299
成本         10.885771
售价        306.172010
dtype: float64

2.1.2 对每一行求标准差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.std(axis=1))

result:

0    102.753345
1    354.992488
2    347.588838
3     33.619191
4    362.162487
dtype: float64

2.2 对单独的一行或者一列进行操作

2.2.1 对某一列求标准差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].std())

result:

331.910078183835825

2.2.2 对某一行求标准差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].std())

result:

实体店销售量   NaN
线上销售量    NaN
成本       NaN
售价       NaN
dtype: float64

2.3 对多行或者多列进行操作

2.3.1 对多列求标准差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].std())

result:

实体店销售量    331.910078
线上销售量     304.338299
dtype: float64

2.3.2 对多行求标准差


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].std())

result:

实体店销售量     15.556349
线上销售量     388.908730
成本         15.556349
售价         78.488853
dtype: float64

总结

到此这篇关于Python pandas求方差和标准差的文章就介绍到这了,更多相关pandas求方差和标准差内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯