文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python OpenCV识别行人入口进出人数统计

2023-01-06 09:00

关注

前言

这篇博客针对《Python OpenCV识别行人入口进出人数统计》编写代码,功能包括了入口行人识别,人数统计。代码整洁,规则,易读。应用推荐首选。

一、所需工具软件

1. Python3.6以上
2. Pycharm代码编辑器
3. OpenCV, Numpy库

二、使用步骤

1.引入库

代码如下(示例):

#导入需要的包
import numpy as np
import cv2
import Person
import time

2.识别特征图像

代码如下(示例):

video=cv2.VideoCapture("counting_test.avi")
#输出视频
fourcc = cv2.VideoWriter_fourcc(*'XVID')#输出视频制编码
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
 
w = video.get(3)
h = video.get(4)
print("视频的原宽度为:")
print(int(w))
print("视频的原高度为:")
area = h*w
print(int(h))
areaTHreshold = area/500
print('Area Threshold', areaTHreshold)
 
#计算画线的位置
line_up = int(1*(h/4))
line_down = int(2.7*(h/4))
up_limit = int(.5*(h/4))
down_limit = int(3.2*(h/4))
print ("Red line y:",str(line_down))
print ("Green line y:", str(line_up))
 
pt5 = [0, up_limit]
pt6 = [w, up_limit]
pts_L3 = np.array([pt5,pt6], np.int32)
pts_L3 = pts_L3.reshape((-1,1,2))
pt7 =  [0, down_limit]
pt8 =  [w, down_limit]
pts_L4 = np.array([pt7,pt8], np.int32)
pts_L4 = pts_L4.reshape((-1,1,2))
#背景剔除
# fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True)
fgbg = cv2.createBackgroundSubtractorKNN()
#用于后面形态学处理的核
kernel = np.ones((3,3),np.uint8)
kerne2 = np.ones((5,5),np.uint8)
kerne3 = np.ones((11,11),np.uint8)
 
while(video.isOpened()):
    ret,frame=video.read()
    if frame is None:
        break
    #应用背景剔除
    gray = cv2.GaussianBlur(frame, (31, 31), 0)
    #cv2.imshow('GaussianBlur', frame)
    #cv2.imshow('GaussianBlur', gray)
    fgmask = fgbg.apply(gray)
    fgmask2 = fgbg.apply(gray)
 
    try:
        #***************************************************************
        #二值化
        ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY)
        ret,imBin2 = cv2.threshold(fgmask2,200,255,cv2.THRESH_BINARY)
        #cv2.imshow('imBin', imBin2)
        #开操作(腐蚀->膨胀)消除噪声
        mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kerne3)
        mask2 = cv2.morphologyEx(imBin2, cv2.MORPH_OPEN, kerne3)
        #闭操作(膨胀->腐蚀)将区域连接起来
        mask =  cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kerne3)
        mask2 = cv2.morphologyEx(mask2, cv2.MORPH_CLOSE, kerne3)
        #cv2.imshow('closing_mask', mask2)
        #*************************************************************
    except:
        print('EOF')
        print ('IN:',cnt_in+count_in)
        print ('OUT:',cnt_in+count_in)
        break
 
    #找到边界
    _mask2,contours0, hierarchy = cv2.findContours(mask2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contours0:
        rect = cv2.boundingRect(cnt)#矩形边框
        area=cv2.contourArea(cnt)#每个矩形框的面积
        if area>areaTHreshold:
            #************************************************
            #moments里包含了许多有用的信息
            M=cv2.moments(cnt)
            cx=int(M['m10']/M['m00'])#计算重心
            cy=int(M['m01']/M['m00'])
            x, y, w, h = cv2.boundingRect(cnt)#x,y为矩形框左上方点的坐标,w为宽,h为高
            new=True
            if cy in range(up_limit,down_limit):
                for i in persons:
                    if abs(cx-i.getX())<=w and abs(cy-i.getY())<=h:
                        new=False
                        i.updateCoords(cx,cy)
                        if i.going_UP(line_down,line_up)==True:
                            # cv2.circle(frame, (cx, cy), 5, line_up_color, -1)
                            # img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_up_color, 2)
                            if w>80:
                                count_in=w/40
                                print("In:执行了/60")
               time.strftime("%c"))
                        elif i.going_DOWN(line_down,line_up)==True:
                            # cv2.circle(frame, (cx, cy), 5, (0, 0, 255), -1)
                            # img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_down_color, 2)
time.strftime("%c"))
                        break
                        #状态为1表明
                    if i.getState() == '1':
                        if i.getDir() == 'down' and i.getY() > down_limit:
                            i.setDone()
                        elif i.getDir() == 'up' and i.getY() < up_limit:
                            i.setDone()
                    if i.timedOut():
                        # 已经记过数且超出边界将其移出persons队列
                        index = persons.index(i)
                        persons.pop(index)
                        del i  # 清楚内存中的第i个人
                if new == True:
                    p = Person.MyPerson(pid, cx, cy, max_p_age)
                    persons.append(p)
                    pid += 1
 
print("进入的总人数为:")
print(cnt_in)
print("出去的总人数为:")
print(cnt_out)
video.release();
cv2.destroyAllWindows()

3.运行结果如下: 

到此这篇关于Python OpenCV识别行人入口进出人数统计的文章就介绍到这了,更多相关OpenCV人数统计内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯