前言
这篇博客针对《Python OpenCV识别行人入口进出人数统计》编写代码,功能包括了入口行人识别,人数统计。代码整洁,规则,易读。应用推荐首选。
一、所需工具软件
1. Python3.6以上
2. Pycharm代码编辑器
3. OpenCV, Numpy库
二、使用步骤
1.引入库
代码如下(示例):
#导入需要的包
import numpy as np
import cv2
import Person
import time
2.识别特征图像
代码如下(示例):
video=cv2.VideoCapture("counting_test.avi")
#输出视频
fourcc = cv2.VideoWriter_fourcc(*'XVID')#输出视频制编码
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
w = video.get(3)
h = video.get(4)
print("视频的原宽度为:")
print(int(w))
print("视频的原高度为:")
area = h*w
print(int(h))
areaTHreshold = area/500
print('Area Threshold', areaTHreshold)
#计算画线的位置
line_up = int(1*(h/4))
line_down = int(2.7*(h/4))
up_limit = int(.5*(h/4))
down_limit = int(3.2*(h/4))
print ("Red line y:",str(line_down))
print ("Green line y:", str(line_up))
pt5 = [0, up_limit]
pt6 = [w, up_limit]
pts_L3 = np.array([pt5,pt6], np.int32)
pts_L3 = pts_L3.reshape((-1,1,2))
pt7 = [0, down_limit]
pt8 = [w, down_limit]
pts_L4 = np.array([pt7,pt8], np.int32)
pts_L4 = pts_L4.reshape((-1,1,2))
#背景剔除
# fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True)
fgbg = cv2.createBackgroundSubtractorKNN()
#用于后面形态学处理的核
kernel = np.ones((3,3),np.uint8)
kerne2 = np.ones((5,5),np.uint8)
kerne3 = np.ones((11,11),np.uint8)
while(video.isOpened()):
ret,frame=video.read()
if frame is None:
break
#应用背景剔除
gray = cv2.GaussianBlur(frame, (31, 31), 0)
#cv2.imshow('GaussianBlur', frame)
#cv2.imshow('GaussianBlur', gray)
fgmask = fgbg.apply(gray)
fgmask2 = fgbg.apply(gray)
try:
#***************************************************************
#二值化
ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY)
ret,imBin2 = cv2.threshold(fgmask2,200,255,cv2.THRESH_BINARY)
#cv2.imshow('imBin', imBin2)
#开操作(腐蚀->膨胀)消除噪声
mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kerne3)
mask2 = cv2.morphologyEx(imBin2, cv2.MORPH_OPEN, kerne3)
#闭操作(膨胀->腐蚀)将区域连接起来
mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kerne3)
mask2 = cv2.morphologyEx(mask2, cv2.MORPH_CLOSE, kerne3)
#cv2.imshow('closing_mask', mask2)
#*************************************************************
except:
print('EOF')
print ('IN:',cnt_in+count_in)
print ('OUT:',cnt_in+count_in)
break
#找到边界
_mask2,contours0, hierarchy = cv2.findContours(mask2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours0:
rect = cv2.boundingRect(cnt)#矩形边框
area=cv2.contourArea(cnt)#每个矩形框的面积
if area>areaTHreshold:
#************************************************
#moments里包含了许多有用的信息
M=cv2.moments(cnt)
cx=int(M['m10']/M['m00'])#计算重心
cy=int(M['m01']/M['m00'])
x, y, w, h = cv2.boundingRect(cnt)#x,y为矩形框左上方点的坐标,w为宽,h为高
new=True
if cy in range(up_limit,down_limit):
for i in persons:
if abs(cx-i.getX())<=w and abs(cy-i.getY())<=h:
new=False
i.updateCoords(cx,cy)
if i.going_UP(line_down,line_up)==True:
# cv2.circle(frame, (cx, cy), 5, line_up_color, -1)
# img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_up_color, 2)
if w>80:
count_in=w/40
print("In:执行了/60")
time.strftime("%c"))
elif i.going_DOWN(line_down,line_up)==True:
# cv2.circle(frame, (cx, cy), 5, (0, 0, 255), -1)
# img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_down_color, 2)
time.strftime("%c"))
break
#状态为1表明
if i.getState() == '1':
if i.getDir() == 'down' and i.getY() > down_limit:
i.setDone()
elif i.getDir() == 'up' and i.getY() < up_limit:
i.setDone()
if i.timedOut():
# 已经记过数且超出边界将其移出persons队列
index = persons.index(i)
persons.pop(index)
del i # 清楚内存中的第i个人
if new == True:
p = Person.MyPerson(pid, cx, cy, max_p_age)
persons.append(p)
pid += 1
print("进入的总人数为:")
print(cnt_in)
print("出去的总人数为:")
print(cnt_out)
video.release();
cv2.destroyAllWindows()
3.运行结果如下:
到此这篇关于Python OpenCV识别行人入口进出人数统计的文章就介绍到这了,更多相关OpenCV人数统计内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!