本文汇总了Python中numpy.float32方法的典型用法代码示例,可以为大家提供其具体用法示例。
示例1:draw_image
import numpy as np
from numpy import float32
def draw_image(self, img, color=[0, 255, 0], alpha=1.0, copy=True, from_img=None):
if copy:
img = np.copy(img)
orig_dtype = img.dtype
if alpha != 1.0 and img.dtype != np.float32:
img = img.astype(np.float32, copy=False)
for rect in self:
if from_img is not None:
rect.resize(from_img, img).draw_on_image(img, color=color, alpha=alpha, copy=False)
else:
rect.draw_on_image(img, color=color, alpha=alpha, copy=False)
if orig_dtype != img.dtype:
img = img.astype(orig_dtype, copy=False)
return img
示例2:generate_moving_mnist
import numpy as np
from numpy import float32
def generate_moving_mnist(self, num_digits=2):
'''
Get random trajectories for the digits and generate a video.
'''
data = np.zeros((self.n_frames_total, self.image_size_, self.image_size_), dtype=np.float32)
for n in range(num_digits):
# Trajectory
start_y, start_x = self.get_random_trajectory(self.n_frames_total)
ind = random.randint(0, self.mnist.shape[0] - 1)
digit_image = self.mnist[ind]
for i in range(self.n_frames_total):
top = start_y[i]
left = start_x[i]
bottom = top + self.digit_size_
right = left + self.digit_size_
# Draw digit
data[i, top:bottom, left:right] = np.maximum(data[i, top:bottom, left:right], digit_image)
data = data[..., np.newaxis]
return data
示例3:wav_format
import numpy as np
from numpy import float32
def wav_format(self, input_wave_file, output_wave_file, target_phrase):
pop_size = 100
elite_size = 10
mutation_p = 0.005
noise_stdev = 40
noise_threshold = 1
mu = 0.9
alpha = 0.001
max_iters = 3000
num_points_estimate = 100
delta_for_gradient = 100
delta_for_perturbation = 1e3
input_audio = load_wav(input_wave_file).astype(np.float32)
pop = np.expand_dims(input_audio, axis=0)
pop = np.tile(pop, (pop_size, 1))
output_wave_file = output_wave_file
target_phrase = target_phrase
funcs = setup_graph(pop, np.array([toks.index(x) for x in target_phrase]))
示例4:get_rois_blob
import numpy as np
from numpy import float32
def get_rois_blob(im_rois, im_scale_factors):
"""Converts RoIs into network inputs.
Arguments:
im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates
im_scale_factors (list): scale factors as returned by _get_image_blob
Returns:
blob (ndarray): R x 5 matrix of RoIs in the image pyramid
"""
rois_blob_real = []
for i in range(len(im_scale_factors)):
rois, levels = _project_im_rois(im_rois, np.array([im_scale_factors[i]]))
rois_blob = np.hstack((levels, rois))
rois_blob_real.append(rois_blob.astype(np.float32, copy=False))
return rois_blob_real
示例5:generate_anchors_pre
import numpy as np
from numpy import float32
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)):
""" A wrapper function to generate anchors given different scales
Also return the number of anchors in variable 'length'
"""
anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
A = anchors.shape[0]
shift_x = np.arange(0, width) * feat_stride
shift_y = np.arange(0, height) * feat_stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
K = shifts.shape[0]
# width changes faster, so here it is H, W, C
anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
length = np.int32(anchors.shape[0])
return anchors, length
示例6:draw_heatmap
import numpy as np
from numpy import float32
def draw_heatmap(img, heatmap, alpha=0.5):
"""Draw a heatmap overlay over an image."""
assert len(heatmap.shape) == 2 or \
(len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
assert img.dtype in [np.uint8, np.int32, np.int64]
assert heatmap.dtype in [np.float32, np.float64]
if img.shape[0:2] != heatmap.shape[0:2]:
heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
heatmap_rs = ia.imresize_single_image(
heatmap_rs[..., np.newaxis],
img.shape[0:2],
interpolation="nearest"
)
heatmap = np.squeeze(heatmap_rs) / 255.0
cmap = plt.get_cmap('jet')
heatmap_cmapped = cmap(heatmap)
heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
heatmap_cmapped = heatmap_cmapped * 255
mix = (1-alpha) * img + alpha * heatmap_cmapped
mix = np.clip(mix, 0, 255).astype(np.uint8)
return mix
示例7:maybe_cast_to_float64
import numpy as np
from numpy import float32
def maybe_cast_to_float64(da):
"""Cast DataArrays to np.float64 if they are of type np.float32.
Parameters
----------
da : xr.DataArray
Input DataArray
Returns
-------
DataArray
"""
if da.dtype == np.float32:
logging.warning('Datapoints were stored using the np.float32 datatype.'
'For accurate reduction operations using bottleneck, '
'datapoints are being cast to the np.float64 datatype.'
' For more information see: https://github.com/pydata/'
'xarray/issues/1346')
return da.astype(np.float64)
else:
return da
示例8:in_top_k
import numpy as np
from numpy import float32
def in_top_k(predictions, targets, k):
'''Returns whether the `targets` are in the top `k` `predictions`
# Arguments
predictions: A tensor of shape batch_size x classess and type float32.
targets: A tensor of shape batch_size and type int32 or int64.
k: An int, number of top elements to consider.
# Returns
A tensor of shape batch_size and type int. output_i is 1 if
targets_i is within top-k values of predictions_i
'''
predictions_top_k = T.argsort(predictions)[:, -k:]
result, _ = theano.map(lambda prediction, target: any(equal(prediction, target)), sequences=[predictions_top_k, targets]
示例9:ctc_path_probs
import numpy as np
from numpy import float32
def ctc_path_probs(predict, Y, alpha=1e-4):
smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0]
L = T.log(smoothed_predict)
zeros = T.zeros_like(L[0])
log_first = zeros
f_skip_idxs = ctc_create_skip_idxs(Y)
b_skip_idxs = ctc_create_skip_idxs(Y[::-1]) # there should be a shortcut to calculating this
def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev):
f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev)
b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev)
return f_active_next, log_f_next, b_active_next, log_b_next
[f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan(
step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first])
idxs = T.arange(L.shape[1]).dimshuffle('x', 0)
mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1]
log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L
return log_probs, mask
示例10:rmsprop
import numpy as np
from numpy import float32
def rmsprop(self, cost, params, lr=0.001, rho=0.9, eps=1e-6,consider_constant=None):
"""
RMSProp.
"""
lr = theano.shared(np.float32(lr).astype(floatX))
gradients = self.get_gradients(cost, params,consider_constant)
accumulators = [theano.shared(np.zeros_like(p.get_value()).astype(np.float32)) for p in params]
updates = []
for param, gradient, accumulator in zip(params, gradients, accumulators):
new_accumulator = rho * accumulator + (1 - rho) * gradient ** 2
updates.append((accumulator, new_accumulator))
new_param = param - lr * gradient / T.sqrt(new_accumulator + eps)
updates.append((param, new_param))
return updates
示例11:adadelta
import numpy as np
from numpy import float32
def adadelta(self, cost, params, rho=0.95, epsilon=1e-6,consider_constant=None):
"""
Adadelta. Based on:
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
"""
rho = theano.shared(np.float32(rho).astype(floatX))
epsilon = theano.shared(np.float32(epsilon).astype(floatX))
gradients = self.get_gradients(cost, params,consider_constant)
accu_gradients = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
accu_deltas = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
updates = []
for param, gradient, accu_gradient, accu_delta in zip(params, gradients, accu_gradients, accu_deltas):
new_accu_gradient = rho * accu_gradient + (1. - rho) * gradient ** 2.
delta_x = - T.sqrt((accu_delta + epsilon) / (new_accu_gradient + epsilon)) * gradient
new_accu_delta = rho * accu_delta + (1. - rho) * delta_x ** 2.
updates.append((accu_gradient, new_accu_gradient))
updates.append((accu_delta, new_accu_delta))
updates.append((param, param + delta_x))
return updates
示例12:adagrad
import numpy as np
from numpy import float32
def adagrad(self, cost, params, lr=1.0, epsilon=1e-6,consider_constant=None):
"""
Adagrad. Based on http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
"""
lr = theano.shared(np.float32(lr).astype(floatX))
epsilon = theano.shared(np.float32(epsilon).astype(floatX))
gradients = self.get_gradients(cost, params,consider_constant)
gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
updates = []
for param, gradient, gsum in zip(params, gradients, gsums):
new_gsum = gsum + gradient ** 2.
updates.append((gsum, new_gsum))
updates.append((param, param - lr * gradient / (T.sqrt(gsum + epsilon))))
return updates
示例13:sgd
import numpy as np
from numpy import float32
def sgd(self, cost, params,constraints={}, lr=0.01):
"""
Stochatic gradient descent.
"""
updates = []
lr = theano.shared(np.float32(lr).astype(floatX))
gradients = self.get_gradients(cost, params)
for p, g in zip(params, gradients):
v=-lr*g;
new_p=p+v;
# apply constraints
if p in constraints:
c=constraints[p];
new_p=c(new_p);
updates.append((p, new_p))
return updates
示例14:sgdmomentum
import numpy as np
from numpy import float32
def sgdmomentum(self, cost, params,constraints={}, lr=0.01,consider_constant=None, momentum=0.):
"""
Stochatic gradient descent with momentum. Momentum has to be in [0, 1)
"""
# Check that the momentum is a correct value
assert 0 <= momentum < 1
lr = theano.shared(np.float32(lr).astype(floatX))
momentum = theano.shared(np.float32(momentum).astype(floatX))
gradients = self.get_gradients(cost, params)
velocities = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params]
updates = []
for param, gradient, velocity in zip(params, gradients, velocities):
new_velocity = momentum * velocity - lr * gradient
updates.append((velocity, new_velocity))
new_p=param+new_velocity;
# apply constraints
if param in constraints:
c=constraints[param];
new_p=c(new_p);
updates.append((param, new_p))
return updates
示例15:set_values
import numpy as np
from numpy import float32
def set_values(name, param, pretrained):
"""
Initialize a network parameter with pretrained values.
We check that sizes are compatible.
"""
param_value = param.get_value()
if pretrained.size != param_value.size:
raise Exception(
"Size mismatch for parameter %s. Expected %i, found %i."
% (name, param_value.size, pretrained.size)
)
param.set_value(np.reshape(
pretrained, param_value.shape
).astype(np.float32))
到此这篇关于numpy.float32的典型用法的文章就介绍到这了,更多相关numpy.float32用法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!