文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何利用Python matplotlib绘制风能玫瑰图

2023-06-14 08:16

关注

这篇文章主要介绍如何利用Python matplotlib绘制风能玫瑰图,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

概述

在之前的风资源分析文章中,有提到过用widrose包来进行玫瑰图的绘制,目前的可视化绘图包有很多,但是最基础和底层的,本人认为还是matplotlib,有时候为了画1-2个图就去安装一个包,好麻烦,我就是个安装软件的渣渣,所以,推己及人,我也研究了一下,matplotlib画玫瑰图的方法,废话不多说,开始咯~~~

风能玫瑰图

玫瑰图是气象科学专业统计图表,用来统计某个地区一段时期内风向、风速发生频率,又分为“风向玫瑰图”和“风速玫瑰图”。本文中的玫瑰图是将风速和风向结合在一起,画出的风能玫瑰图。

读取数据

读取对应的测风数据,并进行数据的基本计算,在matplotlib中画图中没有集成的计算包,所以一定要充分了解绘制玫瑰图的原理,将数据通过计算来处理成绘图需要的形式,再进行调用绘图。

**1、读取数据,**并提取出绘图的风速风向数据,此时的数据是原始风速风向数据。

import pandas as pdimport matplotlib.pyplot as pltimport numpy as npimport matplotlib as mplplt.rcParams['font.sans-serif']=['SimHei'] #显示中文plt.rcParams['axes.unicode_minus']=False #显示负号filename=r'E:\python总结\实例数据\matplotlib画玫瑰图\Sta_WLS7-4880-0420-0728.xlsx'datat=pd.read_excel(filename,sheet_name='原始数据')datat.columns# 提取绘图的风速风向数据,并进行简单的删除空值处理dt=datat.loc[:,('90m Wind Speed (m/s)','90m Wind Direction (�)')] #提取90m高度的风速和风向dt=dt.dropna() #删除空值

如何利用Python matplotlib绘制风能玫瑰图

2、进行绘图前的数据计算。

mx=np.ceil(max(dt['90m Wind Speed (m/s)'])) #风速最大值向上取整ct0=np.array(np.arange(0,361,22.5)) #划分风向的区间,22.5度一个区间ct1=np.array(np.arange(0,mx+2,2)) #划分风速的区间,2米一个区间#将风速和风向进行区间划分dt['wd']=pd.cut(dt['90m Wind Direction (�)'],ct0) dt['ws']=pd.cut(dt['90m Wind Speed (m/s)'],ct1) #计算各区间段数据量,输出结果为层次化索引序列count=dt['90m Wind Speed (m/s)'].groupby([dt['ws'],dt['wd']]).count() data=count.unstack() #将层次化索引转化为表格

如何利用Python matplotlib绘制风能玫瑰图

如何利用Python matplotlib绘制风能玫瑰图

3、绘制玫瑰图与颜色条。

根据上面计算的数据data来进行绘图。

n=16 #绘制的扇区的个数,与上面角度的区间划分一致的theta=np.linspace(0,2*np.pi,n,endpoint=False) #获取16个方向的角度值width=np.pi*1.5/n #设置扇形的宽度#设置角度对应的标签labels=list(['N','','45','','E','','135','','S','','225','','W','','315',''])fig=plt.figure() #新建画布ax=fig.add_axes([0.1,0.1,0.7,0.7],projection='polar') #在画布添加一个极坐标图,即玫瑰图ax1=fig.add_axes([0.8,0.1,0.03,0.7]) #在画布里面添加颜色条,分别对应左,下,宽,高#根据划分的风速段个数来进行颜色配置colors=['blue','orange','forestgreen','tomato','violet','red','m','yellow','gray'] cmap=mpl.colors.ListedColormap(colors)norm=mpl.colors.BoundaryNorm(ct1,cmap.N)for i in range(0,len(data.index)): idx=data.index[i] rad=data.loc[idx] #画玫瑰柱状图,由此类推,可以画雷达图,气泡图等等,只要将bar改成对应的图就可以 ax.bar(theta,rad,width=width,bottom=100,label=idx,tick_label=labels,color=colors[i])  ax.set_theta_zero_location('N') #设置0度正北方向ax.set_theta_direction(-1) #设置顺时针方向绘图ax.set_title('风玫瑰图',fontsize=16)ax.tick_params(labelsize=15) ax.set_yticks([200,500,1000,1500]) #默认的y轴出现的频数,也可设置为空cb=mpl.colorbar.ColorbarBase(ax1,cmap=cmap,norm=norm) #设置颜色条cb.ax.tick_params(labelsize=14) #设置颜色条字体和大小

得到风玫瑰柱状图如下:

如何利用Python matplotlib绘制风能玫瑰图

将里面:

ax.bar(theta,rad,width=width,bottom=100,label=idx,tick_label=labels,color=colors[i])

替换成:

ax.fill(theta,rad,alpha=0.5,color=colors[i])

得到风能面积图,不过由于本次数据覆盖严重,比较丑:

如何利用Python matplotlib绘制风能玫瑰图

简单的风向玫瑰图

在实际运用中,有时候并不需要很复杂的玫瑰图,简单的表示各风向上的风速出现频次就可以了,因此,可以画简单的风向玫瑰图。

data_0=dt['90m Wind Speed (m/s)'].groupby(dt['wd']).count() #计算每一个风向段的风速频次ax=plt.subplot(111,projection='polar') #建立极坐标系bars=ax.bar(theta,data_0,width=width,bottom=0.0)#为每个柱子配颜色,有两种方法,一种是一个柱子设置一个颜色,根据柱子的个数设置颜色的个数#另一种是用连续色彩的映射,第二种方法需要将画图数据归一化到0-1之间mm=max(data_0)for r,bar in zip(data_0,bars): bar.set_facecolor(plt.cm.viridis(r/mm)) #设置数值映射的颜色 bar.set_alpha(0.8) #设置颜色透明度 ax.set_theta_zero_location('N') #设置0度正北方向ax.set_theta_direction(-1) #设置顺时针方向绘图ax.set_title('风向玫瑰图',fontsize=16)ax.tick_params(labelsize=13) ax.set_yticks([500,1000,2000,4000]) #默认的y轴出现的频数,也可设置为空

得到如下图:

如何利用Python matplotlib绘制风能玫瑰图

由于风向数据的特征很明显,即主要风向明确,所以图画出来不太好看。

以上是“如何利用Python matplotlib绘制风能玫瑰图”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网行业资讯频道!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯