文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

分析并发编程之LongAdder原理

2024-04-02 19:55

关注

一、前言

ConcurrentHashMap的源码采用了一种比较独特的方式对map中的元素数量进行统计,自然是要好好研究一下其原理思想,同时也能更好地理解ConcurrentHashMap本身。

本文主要思路分为以下5个部分:

1.计数的使用效果

2.原理的直观图解

3.源码的细节分析

4.与AtomicInteger的比较

5.思想的抽象

学习的入口自然是map的put方法


public V put(K key, V value) {
    return putVal(key, value, false);
}

查看putVal方法

这里并不对ConcurrentHashMap本身的原理作过多讨论,因此我们直接跳到计数部分


final V putVal(K key, V value, boolean onlyIfAbsent) {
    ...
    addCount(1L, binCount);
    return null;
}

每当成功添加一个元素之后,都会调用addCount方法进行数量的累加1的操作,这就是我们研究的目标

因为ConcurrentHashMap的设计初衷就是为了解决多线程并发场景下的map操作,因此在作数值累加的时候自然也要考虑线程安全

当然,多线程数值累加一般是学习并发编程的第一课,本身并非很复杂,可以采用AtomicInteger或者锁等等方式来解决该问题

然而如果我们查看该方法,就会发现,一个想来应该比较简单的累加方法,其逻辑看上去却相当复杂

这里我只贴出了累加算法的核心部分


private final void addCount(long x, int check) {
    CounterCell[] as; long b, s;
    if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                        U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        s = sumCount();
    }
    ...
}

我们就来研究一下该逻辑的实现思路。而这个思路其实是照搬了LongAdder类的逻辑,因此我们直接查看该算法的原始类

二、LongAdder类的使用

我们先看下LongAdder的使用效果


LongAdder adder = new LongAdder();
int num = 0;

@Test
public void test5() throws InterruptedException {
    Thread[] threads = new Thread[10];
    for (int i = 0; i < 10; i++) {
        threads[i] = new Thread(() -> {
            for (int j = 0; j < 10000; j++) {
                adder.add(1);
                num += 1;
            }
        });
        threads[i].start();
    }
    for (int i = 0; i < 10; i++) {
        threads[i].join();
    }
    System.out.println("adder:" + adder);
    System.out.println("num:" + num);
}

输出结果

adder:100000

num:40982

可以看到adder在使用效果上是可以保证累加的线程安全的

三、LongAdder原理的直观理解

为了更好地对源码进行分析,我们需要先从直觉上理解它的原理,否则直接看代码的话会一脸懵逼

LongAdder的计数主要分为2个对象

一个long类型的字段:base

一个Cell对象数组,Cell对象中就维护了一个long类型的字段value,用来计数



transient volatile Cell[] cells;


transient volatile long base;

当没有发生线程竞争的时候,累加都会发生在base字段上,这就相当于是一个单线程累加2次,只不过base的累加是一个cas操作

当发生线程竞争的时候,必然有一个线程对base的cas累加操作失败,于是它先去判断Cell是否已经被初始化了,如果没有则初始化一个长度为2的数组,并根据线程的hash值找到对应的数组索引,并对该索引的Cell对象中的value值进行累加(这个累加也是cas的操作)

如果一共有3个线程发生了竞争,那么其中第一个线程对base的cas累加成功,剩下2个线程都需要去对Cell数组中的元素进行累加。因为对Cell中value值的累加也是一个cas操作,如果第二个线程和第三个线程的hash值对应的数组下标是同一个,那么同样会发生竞争,如果第二个线程成功了,第三个线程就会去rehash自己的hash值,如果得到的新的hash值对应的是另一个元素为null的数组下标,那么就new一个Cell对象并对value值进行累加

如果此时有线程4同时参与竞争,那么对于线程4来说,即使rehash后还是可能在和线程3的竞争过程中cas失败,此时如果当前数组的容量小于系统可用的cpu的数量,那么它就会对数组进行扩容,之后再次rehash,重复尝试对Cell数组中某个下标对象的累加

以上就是整体直觉上的理解,然而代码中还有很多细节的设计非常值得学习,所以我们就开始进入源码分析的环节

四、源码分析

入口方法是add


public void add(long x) {
    Cell[] as; long b, v; int m; Cell a;
    
    if ((as = cells) != null || !casBase(b = base, b + x)) {
        
        boolean uncontended = true;
        
        if (as == null || (m = as.length - 1) < 0 ||
                
                (a = as[getProbe() & m]) == null ||
                
                !(uncontended = a.cas(v = a.value, v + x)))
            longAccumulate(x, null, uncontended);
    }
}

当不发生线程竞争的时候,那累加操作就会由第一个if中的casBase负责,对应之前图解的情况一

当发生线程竞争之后,累加操作就会由cell数组负责,对应之前图解的情况二(数组的初始化在longAccumulate方法中)

接着我们查看主逻辑方法,因为方法比较长,所以我会一段一段拿出来解析

longAccumulate方法

签名中的参数

x表示需要累加的值

fn表示需要如何累加,一般传null就行,不重要

wasUncontended表示是否在外层方法遇到了竞争失败的情况,因为外层的判断逻辑是多个“或”(as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null),所以如果数组为空或者相应的下标元素还未初始化,这个字段就会保持false


final void longAccumulate(long x, LongBinaryOperator fn,
                          boolean wasUncontended) {
  ...
}

首先判断线程的hash值是否为0,如果为0则需要做一个初始化,即rehash

之后会将wasUncontended置为true,因为即使之前是冲突过的,经过rehash后就会先假设它能找到一个元素不冲突的数组下标


int h;//线程的hash值,在后面的逻辑中会用到
if ((h = getProbe()) == 0) {
    ThreadLocalRandom.current(); // force initialization
    h = getProbe();
    wasUncontended = true;
}

之后是一个死循环,死循环中有3个大的if分支,这3个分支的逻辑作用于数组未初始化的时候,一旦数组初始化完成,那么就都会进入主逻辑了,因此我这里把主逻辑抽取出来放到后面单独说,也可以避免外层分支对思路的影响



boolean collide = false;

for (; ; ) {
    Cell[] as;
    Cell a;
    int n;//cell数组长度
    long v;//需要被累积的值
    
    if ((as = cells) != null && (n = as.length) > 0) {
        ...
        
    } else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
        
        boolean init = false;
        try {                           
            if (cells == as) {
                Cell[] rs = new Cell[2];
                rs[h & 1] = new Cell(x);
                cells = rs;
                init = true;
            }
        } finally {
            cellsBusy = 0;
        }
        if (init)
            break;
        
    } else if (casBase(v = base, ((fn == null) ? v + x :
            fn.applyAsLong(v, x))))
        break;                          // Fall back on using base
}

接着就看对cell数组元素进行累加的主逻辑



if ((as = cells) != null && (n = as.length) > 0) {
    
    if ((a = as[(n - 1) & h]) == null) {
        
        if (cellsBusy == 0) {
            
            Cell r = new Cell(x);
            
            if (cellsBusy == 0 && casCellsBusy()) {
                boolean created = false;
                try {
                    
                    Cell[] rs;
                    int m, j;
                    if ((rs = cells) != null &&
                            (m = rs.length) > 0 &&
                            rs[j = (m - 1) & h] == null) {
                        rs[j] = r;
                        created = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                
                if (created)
                    break;
                
                continue;
            }
        }
        
        collide = false;
    
    } else if (!wasUncontended) 
        wasUncontended = true;
    
    else if (a.cas(v = a.value, ((fn == null) ? v + x :
            fn.applyAsLong(v, x))))
        break;
    
    else if (n >= NCPU || cells != as)
        collide = false;
    
    else if (!collide)
        collide = true;
    
    else if (cellsBusy == 0 && casCellsBusy()) {
        
        try {
            if (cells == as) { 
                Cell[] rs = new Cell[n << 1];
                for (int i = 0; i < n; ++i)
                    rs[i] = as[i];
                cells = rs;
            }
        } finally {
            cellsBusy = 0;
        }
        collide = false;
        
        continue;               
    }
    
    h = advanceProbe(h);
}

到这里LongAdder的源码其实就分析结束了,其实代码并不多,但是他的思想非常值得我们去学习。

五、与AtomicInteger的比较

光分析源码其实还差一些感觉,我们还没有搞懂为何作者要在已经有AtomicInteger的情况下,再设计这么一个看上去非常复杂的类。

那么首先我们先分析下AtomicInteger保证线程安全的原理

查看最基本的getAndIncrement方法


public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}

调用了Unsafe类的getAndAddInt方法,继续往下看


public final int getAndAddInt(Object var1, long var2, int var4) {
    int var5;
    do {
        var5 = this.getIntVolatile(var1, var2);
    } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

    return var5;
}

这里我们不再深究getIntVolatile和compareAndSwapInt方法具体实现,因为其已经是native的方法了

可以看到,AtomicInteger底层是使用了cas+自旋的方式解决原子性问题的,即如果一次赋值不成功,那么就自旋,直到赋值成功为止

那么由此可以推断,当出现大量线程并发,竞争非常激烈的时候,AtomicInteger就有可能导致有些线程不断地竞争失败,不断自旋从而影响任务的吞吐量

为了解决高并发下的自旋问题,LongAdder的作者在设计的时候就通过增加一个数组的方式,使得竞争的对象从一个值变成多个值,从而使得发生竞争的频率降低,从而缓解了自旋的问题,当然付出的代价就是额外的存储空间。

最后我简单做了个测试,比较2种计数方法的耗时

通过原理可知,只有当线程竞争非常激烈的时候,LongAdder的优势才会比较明显,因此这里我用了100个线程,每一个线程对同一个数累加1000000次,得到结果如下,差距非常巨大,达到15倍!

LongAdder耗时:104292242nanos

AtomicInteger耗时:1583294474nanos

当然这只是一个简单测试,包含了很多随机性,有兴趣的同学可以尝试不同的竞争程度多次测试

六、思想的抽象

最后我们需要将作者的具体代码和实现逻辑抽象一下,理清思考的过程

1)AtomicInteger遇到的问题:单个资源的竞争导致自旋的发生

2)解决的思路:将单个对象的竞争扩展为多个对象的竞争(有那么一些分治的思想)

3)扩展的可控性:多个竞争对象需要付出额外的存储空间,因此不能无脑地扩展(极端情况是一个线程一个计数的对象,这明显不合理)

4)问题的分层:因为使用类的时候的场景是不可控的,因此需要根据并发的激烈程度动态地扩展额外的存储空间(类似于synchronized的膨胀)

5)3个分层策略:当不发生竞争时,那么用一个值累加即可;当发生一定程度的竞争时,创建一个容量为2的数组,使得竞争的资源扩展为3个;当竞争更加激烈时,则继续扩展数组(对应图解中的1个线程到4个线程的过程)

6)策略细节:在自旋的时候增加rehash,此时虽然付出了一定的运算时间计算hash、比较数组对象等,但是这会使得并发的线程尽快地找到专属于自己的对象,在之后就不会再发生任何竞争(磨刀不误砍柴工,特别注意wasUncontended字段的相关注解)

以上就是分析并发编程之LongAdder原理的详细内容,更多关于并发编程 LongAdder的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯