文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pandas 稀疏数据结构的实现

2024-04-02 19:55

关注

简介

如果数据中有很多NaN的值,存储起来就会浪费空间。为了解决这个问题,Pandas引入了一种叫做Sparse data的结构,来有效的存储这些NaN的值。

Spare data的例子

我们创建一个数组,然后将其大部分数据设置为NaN,接着使用这个数组来创建SparseArray:


In [1]: arr = np.random.randn(10)

In [2]: arr[2:-2] = np.nan

In [3]: ts = pd.Series(pd.arrays.SparseArray(arr))

In [4]: ts
Out[4]: 
0    0.469112
1   -0.282863
2         NaN
3         NaN
4         NaN
5         NaN
6         NaN
7         NaN
8   -0.861849
9   -2.104569
dtype: Sparse[float64, nan]

这里的dtype类型是Sparse[float64, nan],它的意思是数组中的nan实际上并没有存储,只有非nan的数据才被存储,并且这些数据的类型是float64.

SparseArray

arrays.SparseArray 是一个  ExtensionArray  ,用来存储稀疏的数组类型。


In [13]: arr = np.random.randn(10)

In [14]: arr[2:5] = np.nan

In [15]: arr[7:8] = np.nan

In [16]: sparr = pd.arrays.SparseArray(arr)

In [17]: sparr
Out[17]: 
[-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)

使用 numpy.asarray()  可以将其转换为普通的数组:


In [18]: np.asarray(sparr)
Out[18]: 
array([-1.9557, -1.6589,     nan,     nan,     nan,  1.1589,  0.1453,
           nan,  0.606 ,  1.3342])

SparseDtype

SparseDtype 表示的是Spare类型。它包含两种信息,第一种是非NaN值的数据类型,第二种是填充时候的常量值,比如nan:


In [19]: sparr.dtype
Out[19]: Sparse[float64, nan]

可以像下面这样构造一个SparseDtype:


In [20]: pd.SparseDtype(np.dtype('datetime64[ns]'))
Out[20]: Sparse[datetime64[ns], NaT]

可以指定填充的值:


In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'),
   ....:                fill_value=pd.Timestamp('2017-01-01'))
   ....: 
Out[21]: Sparse[datetime64[ns], Timestamp('2017-01-01 00:00:00')]

Sparse的属性

可以通过 .sparse 来访问sparse:


In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]")

In [24]: s.sparse.density
Out[24]: 0.5

In [25]: s.sparse.fill_value
Out[25]: 0

Sparse的计算

np的计算函数可以直接用在SparseArray中,并且会返回一个SparseArray。


In [26]: arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan])

In [27]: np.abs(arr)
Out[27]: 
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)

SparseSeries 和 SparseDataFrame

SparseSeries 和 SparseDataFrame在1.0.0 的版本时候被删除了。取代他们的是功能更强的SparseArray。
看下两者的使用上的区别:


# Previous way
>>> pd.SparseDataFrame({"A": [0, 1]})

# New way
In [31]: pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})
Out[31]: 
   A
0  0
1  1

如果是SciPy 中的sparse 矩阵,那么可以使用 DataFrame.sparse.from_spmatrix() :


# Previous way
>>> from scipy import sparse
>>> mat = sparse.eye(3)
>>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C'])

# New way
In [32]: from scipy import sparse

In [33]: mat = sparse.eye(3)

In [34]: df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C'])

In [35]: df.dtypes
Out[35]: 
A    Sparse[float64, 0]
B    Sparse[float64, 0]
C    Sparse[float64, 0]
dtype: object

到此这篇关于Pandas 稀疏数据结构的实现的文章就介绍到这了,更多相关Pandas 稀疏数据结构内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯