文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

ConcurrentHashMap 存储结构源码解析

2022-11-13 18:36

关注

引言

思考:HashTable是线程安全的,为什么不推荐使用?

HashTable是一个线程安全的类,它使用synchronized来锁住整张Hash表来实现线程安全,即每次锁住整张表让线程独占,相当于所有线程进行读写时都去竞争一把锁,导致效率非常低下。

1 ConcurrentHashMap 1.7

在JDK1.7中ConcurrentHashMap采用了数组+分段锁的方式实现

Segment(分段锁)-减少锁的粒度

ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表,同时又是一个ReentrantLock(Segment继承了ReentrantLock)。

1.存储结构

Java 7 版本 ConcurrentHashMap 的存储结构如图:

ConcurrnetHashMap 由很多个 Segment 组合,而每一个 Segment 是一个类似于 HashMap 的结构,所以每一个 HashMap 的内部可以进行扩容。但是 Segment 的个数一旦初始化就不能改变,默认 Segment 的个数是 16 个,所以可以认为 ConcurrentHashMap 默认支持最多 16 个线程并发。

2. 初始化

通过 ConcurrentHashMap 的无参构造探寻 ConcurrentHashMap 的初始化流程。

    
    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

无参构造中调用了有参构造,传入了三个参数的默认值,他们的值是。

    
    static final int DEFAULT_INITIAL_CAPACITY = 16;

static final float DEFAULT_LOAD_FACTOR = 0.75f;

static final int DEFAULT_CONCURRENCY_LEVEL = 16;
Segment下面entryset数组的大小是用DEFAULT_INITIAL_CAPACITY/DEFAULT_CONCURRENCY_LEVEL求出来的。

Segment下面entryset数组的大小是用DEFAULT_INITIAL_CAPACITY/DEFAULT_CONCURRENCY_LEVEL求出来的。

接着看下这个有参构造函数的内部实现逻辑。

@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {
    // 参数校验
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    // 校验并发级别大小,大于 1<<16,重置为 65536
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments
    // 2的多少次方
    int sshift = 0;//控制segment数组的大小
    int ssize = 1;
    // 这个循环可以找到 concurrencyLevel 之上最近的 2的次方值
    while (ssize < concurrencyLevel) {
        ++sshift;//代表ssize左移的次数
        ssize <<= 1;
    }
    // 记录段偏移量
    this.segmentShift = 32 - sshift;
    // 记录段掩码
    this.segmentMask = ssize - 1;
    // 设置容量   判断初始容量是否超过允许的最大容量
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // c = 容量 / ssize ,默认 16 / 16 = 1,这里是计算每个 Segment 中的类似于 HashMap 的容量
   //求entrySet数组的大小,这个地方需要保证entrySet数组的大小至少可以存储下initialCapacity的容量,假设initialCapacity为33,ssize为16,那么c=2,所以if语句是true,那么c=3,MIN_SEGMENT_TABLE_CAPACITY初始值是2,所以if语句成立,那么cap=4,所以每一个segment的容量初始为4,segment为16,16*4>33成立,entrySet数组的大小也需要是2的幂次方
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    int cap = MIN_SEGMENT_TABLE_CAPACITY;
    //Segment 中的类似于 HashMap 的容量至少是2或者2的倍数
    while (cap < c)
        cap <<= 1;
    // create segments and segments[0]
    // 创建 Segment 数组,设置 segments[0]
    Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

总结一下在 Java 7 中 ConcurrnetHashMap 的初始化逻辑。

计算segment数组容量的大小。

计算entrySet数组的大小。

初始化segment数组,其中生成一个s0对象放在数组的第0个位置

为什么首先需要一个s0存储到数组的第一个位置?

因为初始化数组完成后数组元素都还是null值,以后每一次添加一个元素的话,需要封装为entrySet对象,还需要对entrySet数组的大小重新计算,如果把第一次的计算结果全部存储到S0中,那么以后的话只需要直接拿来使用即可,不需要重新计算。虽然Segment对象不同,但是对象中属性内容其实是一样的。

Segment数组的长度第一次已经确定,以后不会在改变,扩容是局部扩容,只对setrySet数组的容量进行扩容。

3. put

接着上面的初始化参数继续查看 put 方法源码。


public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    int hash = hash(key);
    // hash 值无符号右移 28位(初始化时获得),然后与 segmentMask=15 做与运算
    // 其实也就是把高4位与segmentMask(1111)做与运算
// this.segmentMask = ssize - 1;
//对hash值进行右移segmentShift位,计算元素对应segment中数组下表的位置
//把hash右移segmentShift,相当于只要hash值的高32-segmentShift位,右移的目的是保留了hash值的高位。然后和segmentMask与操作计算元素在segment数组中的下表
int j = (hash >>> segmentShift) & segmentMask;
//使用unsafe对象获取数组中第j个位置的值,后面加上的是偏移量
if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
// 如果查找到的 Segment 为空,初始化
s = ensureSegment(j);
//插入segment对象
return s.put(key, hash, value, false);
}

@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
// 判断 u 位置的 Segment 是否为null
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
// 获取0号 segment 里的 HashEntry<K,V> 初始化长度
int cap = proto.table.length;
// 获取0号 segment 里的 hash 表里的扩容负载因子,所有的 segment 的 loadFactor 是相同的
float lf = proto.loadFactor;
// 计算扩容阀值
int threshold = (int)(cap * lf);
// 创建一个 cap 容量的 HashEntry 数组
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck
// 再次检查 u 位置的 Segment 是否为null,因为这时可能有其他线程进行了操作
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
// 自旋检查 u 位置的 Segment 是否为null
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
// 使用CAS 赋值,只会成功一次
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
}

@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
// 判断 u 位置的 Segment 是否为null
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
// 获取0号 segment 里的 HashEntry<K,V> 初始化长度
int cap = proto.table.length;
// 获取0号 segment 里的 hash 表里的扩容负载因子,所有的 segment 的 loadFactor 是相同的
float lf = proto.loadFactor;
// 计算扩容阀值
int threshold = (int)(cap * lf);
// 创建一个 cap 容量的 HashEntry 数组
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck
// 再次检查 u 位置的 Segment 是否为null,因为这时可能有其他线程进行了操作
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
// 自旋检查 u 位置的 Segment 是否为null
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
// 使用CAS 赋值,只会成功一次
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
}

上面的源码分析了 ConcurrentHashMap 在 put 一个数据时的处理流程,下面梳理下具体流程。

计算要 put 的 key 的位置,获取指定位置的 Segment。

Segment.put 插入 key,value 值。

上面探究了获取 Segment 段和初始化 Segment 段的操作。最后一行的 Segment 的 put 方法还没有查看,继续分析。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 获取 ReentrantLock 独占锁,获取不到,scanAndLockForPut 获取。
    HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        HashEntry<K,V>[] tab = table;
        // 计算要put的数据位置
        int index = (tab.length - 1) & hash;
        // CAS 获取 index 坐标的值
        HashEntry<K,V> first = entryAt(tab, index);
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                // 检查是否 key 已经存在,如果存在,则遍历链表寻找位置,找到后替换 value
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                e = e.next;
            }
            else {
                // first 有值没说明 index 位置已经有值了,有冲突,链表头插法。
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
                // 容量大于扩容阀值,小于最大容量,进行扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else
                    // index 位置赋值 node,node 可能是一个元素,也可能是一个链表的表头
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        unlock();
    }
    return oldValue;
}

由于 Segment 继承了 ReentrantLock,所以 Segment 内部可以很方便的获取锁,put 流程就用到了这个功能。

如果这个位置上的 HashEntry 不存在

如果当前容量大于扩容阀值,小于最大容量,进行扩容

直接头插法插入。

如果这个位置上的 HashEntry 存在

判断链表当前元素 Key 和 hash 值是否和要 put 的 key 和 hash 值一致。一致则替换值

不一致,获取链表下一个节点,直到发现相同进行值替换,或者链表表里完毕没有相同的。

如果当前容量大于扩容阀值,小于最大容量,进行扩容

直接链表头插法插入。

这里面的第一步中的 scanAndLockForPut 操作这里没有介绍,这个方法做的操作就是不断的自旋 tryLock() 获取锁。当自旋次数大于指定次数时,使用 lock() 阻塞获取锁。在自旋时顺表获取下 hash 位置的 HashEntry。

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
    // 自旋获取锁
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                e = e.next;
        }
        else if (++retries > MAX_SCAN_RETRIES) {
            // 自旋达到指定次数后,阻塞等到只到获取到锁
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

4. 扩容 rehash

ConcurrentHashMap 的扩容只会扩容到原来的两倍。老数组里的数据移动到新的数组时,位置要么不变,要么变为 index+ oldSize,参数里的 node 会在扩容之后使用链表头插法插入到指定位置。

private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    // 老容量
    int oldCapacity = oldTable.length;
    // 新容量,扩大两倍
    int newCapacity = oldCapacity << 1;
    // 新的扩容阀值 
    threshold = (int)(newCapacity * loadFactor);
    // 创建新的数组
    HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,默认2扩容后是4,-1是3,二进制就是11。
    int sizeMask = newCapacity - 1;
    for (int i = 0; i < oldCapacity ; i++) {
        // 遍历老数组
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算新的位置,新的位置只可能是不便或者是老的位置+老的容量。
            int idx = e.hash & sizeMask;
            if (next == null)   //  Single node on list
                // 如果当前位置还不是链表,只是一个元素,直接赋值
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // 如果是链表了
                HashEntry<K,V> lastRun = e;
                int lastIdx = idx;
                // 新的位置只可能是不便或者是老的位置+老的容量。
                // 遍历结束后,lastRun 后面的元素位置都是相同的
                for (HashEntry<K,V> last = next; last != null; last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // ,lastRun 后面的元素位置都是相同的,直接作为链表赋值到新位置。
                newTable[lastIdx] = lastRun;
                // Clone remaining nodes
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    // 遍历剩余元素,头插法到指定 k 位置。
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 头插法插入新的节点
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

有些同学可能会对最后的两个 for 循环有疑惑,这里第一个 for 是为了寻找这样一个节点,这个节点后面的所有 next 节点的新位置都是相同的。然后把这个作为一个链表赋值到新位置。第二个 for 循环是为了把剩余的元素通过头插法插入到指定位置链表。这样实现的原因可能是基于概率统计,有深入研究的同学可以发表下意见。

5. get

到这里就很简单了,get 方法只需要两步即可。

public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 计算得到 key 的存放位置
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            // 如果是链表,遍历查找到相同 key 的 value。
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

2 ConcurrentHashMap 1.8

1. 存储结构

可以发现 Java8 的 ConcurrentHashMap 相对于 Java7 来说变化比较大,不再是之前的 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。当冲突链表达到一定长度时,链表会转换成红黑树。

补充:CAS

CAS(Compare-and-Swap/Exchange),即比较并替换,是一种实现并发常用到的技术。

CAS核心算法:执行函数:CAS(V,E,N)

V表示准备要被更新的变量 (内存的值)      

E表示我们提供的 期望的值 (期望的原值)

N表示新值 ,准备更新V的值 (新值)

算法思路:V是共享变量,我们拿着自己准备的这个E,去跟V去比较,如果E == V ,说明当前没有其它线程在操作,所以,我们把N 这个值 写入对象的 V 变量中。如果 E != V ,说明我们准备的这个E,已经过时了,所以我们要重新准备一个最新的E ,去跟V 比较,比较成功后才能更新 V的值为N。

如果多个线程同时使用CAS操作一个变量的时候,只有一个线程能够修改成功。其余的线程提供的期望值已经与共享变量的值不一样了,所以均会失败。

   由于CAS操作属于乐观派,它总是认为自己能够操作成功,所以操作失败的线程将会再次发起操作,而不是被OS挂起。所以说,即使CAS操作没有使用同步锁,其它线程也能够知道对共享变量的影响。

因为其它线程没有被挂起,并且将会再次发起修改尝试,所以无锁操作即CAS操作天生免疫死锁。

另外一点需要知道的是,CAS是系统原语,CAS操作是一条CPU的原子指令,所以不会有线程安全问题。

ABA问题:E和E2对比相同是不能保证百分百保证,其他线程没有在自己线程执行计算的过程里抢锁成功过。有可能其他线程操作后新E值和旧E值一样!

ABA问题解决:在E对象里加个操作次数变量就行,每次判断时对比两个,E和操作次数就OK了,因为ABA问题中就算E相同操作次数也绝不相同

2. 初始化 initTable


private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        //如果 sizeCtl < 0 ,说明另外的线程执行CAS 成功,正在进行初始化。
        if ((sc = sizeCtl) < 0)
            // 让出 CPU 使用权
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

从源码中可以发现 ConcurrentHashMap 的初始化是通过自旋和 CAS 操作完成的。里面需要注意的是变量 sizeCtl ,它的值决定着当前的初始化状态。

3. put

直接过一遍 put 源码。

public V put(K key, V value) {
    return putVal(key, value, false);
}

final V putVal(K key, V value, boolean onlyIfAbsent) {
// key 和 value 不能为空
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
// f = 目标位置元素
Node<K,V> f; int n, i, fh;// fh 后面存放目标位置的元素 hash 值
if (tab == null || (n = tab.length) == 0)
// 数组桶为空,初始化数组桶(自旋+CAS)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 桶内为空,CAS 放入,不加锁,成功了就直接 break 跳出
if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
break;  // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 使用 synchronized 加锁加入节点
synchronized (f) {
if (tabAt(tab, i) == f) {
// 说明是链表
if (fh >= 0) {
binCount = 1;
// 循环加入新的或者覆盖节点
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
// 红黑树
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}

final V putVal(K key, V value, boolean onlyIfAbsent) {
// key 和 value 不能为空
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
// f = 目标位置元素
Node<K,V> f; int n, i, fh;// fh 后面存放目标位置的元素 hash 值
if (tab == null || (n = tab.length) == 0)
// 数组桶为空,初始化数组桶(自旋+CAS)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 桶内为空,CAS 放入,不加锁,成功了就直接 break 跳出
if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
break;  // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 使用 synchronized 加锁加入节点
synchronized (f) {
if (tabAt(tab, i) == f) {
// 说明是链表
if (fh >= 0) {
binCount = 1;
// 循环加入新的或者覆盖节点
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
// 红黑树
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}

4. get

get 流程比较简单,直接过一遍源码。

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    // key 所在的 hash 位置
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 如果指定位置元素存在,头结点hash值相同
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                // key hash 值相等,key值相同,直接返回元素 value
                return e.val;
        }
        else if (eh < 0)
            // 头结点hash值小于0,说明正在扩容或者是红黑树,find查找
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {
            // 是链表,遍历查找
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

总结一下 get 过程:

3 总结

Java7 中 ConcurrentHashMap 使用的分段锁,也就是每一个 Segment 上同时只有一个线程可以操作,每一个 Segment 都是一个类似 HashMap 数组的结构,它可以扩容,它的冲突会转化为链表。但是 Segment 的个数一但初始化就不能改变。

Java8 中的 ConcurrentHashMap 使用的 Synchronized 锁加 CAS 的机制。结构也由 Java7 中的 Segment 数组 + HashEntry 数组 + 链表 进化成了 Node 数组 + 链表 / 红黑树,Node 是类似于一个 HashEntry 的结构。它的冲突再达到一定大小时会转化成红黑树,在冲突小于一定数量时又退回链表。

以上就是ConcurrentHashMap 存储结构源码解析的详细内容,更多关于ConcurrentHashMap 存储结构的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯