怎么在pandas中将NaN转换为None?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
原始数据:
示例代码:
import pandas as pd df = pd.read_excel('data/test_data.xlsx')# 将非空数据保留,空数据用None替换df = df.where(df.notnull(), None)print(df)
输出结果:
id value
0 1 100
1 2 None
2 3 None
3 4 50
补充:Pandas Nan & None 处理
在处理数据的时候遇到这个问题。
数据库里的值 是null
然后读取数据库后得到的dataframe 里显示的事None.
想把这些None 装换成0.0 但是试过很多方法都不奏效。
使用过
df['PLANDAY'].replace('None',0)
未奏效
这个判断句是生效的
df.loc[0,'PLANDAY'] is None:
后来发现这个数据类型是Nan 不是None
因此使用解决了上诉问题。
df['PLANDAY'] = df['PLANDAY'].fillna(0.0)
关于怎么在pandas中将NaN转换为None问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注编程网行业资讯频道了解更多相关知识。