怎么在matplotlib中利用bar()函数实现一个百分比堆积柱状图?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
适用于少量数据,数据结构需要手动构造。
import matplotlib.pyplot as pltlabels = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]data = [first, second, third, fourth]x = range(len(labels))width = 0.35# 将bottom_y元素都初始化为0bottom_y = [0] * len(labels)# 计算每组柱子的总和,为计算百分比做准备sums = [sum(i) for i in zip(first, second, third, fourth)]for i in data: # 计算每个柱子的高度,即百分比 y = [a/b for a, b in zip(i, sums)] plt.bar(x, y, width, bottom=bottom_y) # 计算bottom参数的位置 bottom_y = [(a+b) for a, b in zip(y, bottom_y)]plt.xticks(x, labels)plt.title('Percent stacked bar ')plt.show()
使用numpy版本
第一个版本的缺陷在于数据需要手动构造,而且计算稍微繁琐一些。
使用numpy便于处理规模比较大且已存储在文件中数据的数据,计算更简便。
import numpy as npimport matplotlib.pyplot as pltlabels = ['G1', 'G2', 'G3', 'G4', 'G5']first = [20, 34, 30, 35, 27]second = [25, 32, 34, 20, 25]third = [21, 31, 37, 21, 28]fourth = [26, 31, 35, 27, 21]data = [first, second, third, fourth]x = range(len(labels))width = 0.35# 将bottom_y元素都初始化为0bottom_y = np.zeros(len(labels))data = np.array(data)# 按列计算计算每组柱子的总和,为计算百分比做准备sums = np.sum(data, axis=0)for i in data: # 计算每个柱子的高度,即百分比 y = i / sums plt.bar(x, y, width, bottom=bottom_y) # 计算bottom参数的位置 bottom_y = y + bottom_yplt.xticks(x, labels)plt.title('Percent stacked bar ')plt.show()
关于怎么在matplotlib中利用bar()函数实现一个百分比堆积柱状图问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注编程网行业资讯频道了解更多相关知识。